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Abstract

Link prediction in simple graphs is a fundamental problem
in which new links between nodes are predicted based on the
observed structure of the graph. However, in many real-world
applications, there is a need to model relationships among
nodes which go beyond pairwise associations. For exam-
ple, in a chemical reaction, relationship among the reactants
and products is inherently higher-order. Additionally, there is
need to represent the direction from reactants to products. Hy-
pergraphs provide a natural way to represent such complex
higher-order relationships. Graph Convolutional Networks
(GCN) have recently emerged as a powerful deep learning-
based approach for link prediction over simple graphs. How-
ever, their suitability for link prediction in hypergraphs is un-
explored – we fill this gap in this paper and propose Neural
Hyperlink Predictor (NHP). NHP adapts GCNs for link pre-
diction in hypergraphs. We propose two variants of NHP –
NHP-U and NHP-D – for link prediction over undirected and
directed hypergraphs, respectively. To the best of our knowl-
edge, NHP-D is the first ever method for link prediction over
directed hypergraphs and NHP is also the first method for
inductive link prediction in hypergraphs (can handle unseen
links at test time). Through extensive experiments on mul-
tiple real-world datasets, we show NHP’s effectiveness. We
have made the code available to foster reproducible research.

Introduction
The problem of link prediction in graphs has numerous ap-
plications (Lu and Zhou 2011) in the fields of social net-
work analysis (Liben-Nowell and Kleinberg 2003), knowl-
edge bases (Nickel et al. 2016), bioinformatics (Liu et al.
2017) to name a few. However, in many real-world problems
relationships go beyond pairwise associations. For example,
in chemical reactions the relationship representing a group
of chemical compounds that can react is inherently higher-
order. Similarly, co-authorship relationships in an academic
citation network are higher-order etc. Hypergraphs provide
a natural way to model such higher-order complex relations.
Hyperlink prediction is the problem of predicting such miss-
ing higher-order relationships in a hypergraph.

Besides the higher-order relationships, modelling the di-
rection information between these relationships is also use-
ful in many practical applications. For example, in the chem-
ical reactions data, in addition to predicting groups of chem-
ical compounds which form reactants or products, it is also
important to predict the direction between reactants and
products, i.e., a group of reactants react to give a group of
products. Directed hypergraphs (Gallo et al. 1993) provide a
way to model direction information in hypergraphs. Similar
to undirected hypergraphs, predicting missing hyperlinks in

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a directed hypergraph is also useful in practical settings. Fig-
ure 1 illustrates the difference between modelling chemical
reactions data using undirected and directed hypergraphs.
Most of the previous work on hyperlink prediction (Zhou,
Huang, and Schölkopf 2006; Zhang et al. 2018) focuses only
on undirected hypergraphs. Moreover, they cannot handle
unseen hyperlinks at test time. In this work, we focus both
on undirected and directed hypergraphs.

Recently, Graph Convolutional Networks (GCNs) have
emerged as a powerful tool for representation learning on
graphs (Kipf and Welling 2017). GCNs have also been
successfully applied for link prediction on simple graphs
(Zhang and Chen 2018). Inspired by the success of GCNs
for link prediction in graphs and deep learning in general
(Wang, Shi, and Yeung 2017), we propose a GCN-based
framework for hyperlink prediction for both undirected and
directed hypergraphs. We make the following contributions:

• We propose Neural Hyperlink Predictor (NHP), a Graph
Convolutional Network (GCN)-based framework, for the
problem of hyperlink prediction. In contrast to previous
methods, NHP can effectively handle unseen hyperlinks
at test time, i.e., inductive link prediction in hypergraphs.

• We harness the proposed NHP for hyperlink prediction
in directed hypergraphs. To the best of our knowledge,
this reports the first ever attempt at the problem of link
prediction in directed hypergraphs.

• Through extensive experiments on multiple real-world
datasets, we show the effectiveness of NHP for link pre-
diction in both undirected and directed hypergraphs.

Related work
Graph representation learning: The key advancements in
learning effective node representations in graphs include
matrix factorisation methods, random-walk algorithms, and
deep learning on graphs (Hamilton, Ying, and Leskovec
2017b). Our work is based on deep learning on graphs.

Geometric deep learning (Bronstein et al. 2017) is an um-
brella phrase for emerging techniques attempting to gener-
alise (structured) neural network models to non-Euclidean
domains such as graphs and manifolds. Graph convolutional
network (GCN) (Kipf and Welling 2017) defines the con-
volution using a simple linear function of the graph Lapla-
cian and is effective on graph-based semi-supervised learn-
ing (GSSL). GCNs and their extensions are the current state-
of-the art for GSSL (Veličković et al. 2018; Vashishth et al.
2019; Ding, Tang, and Zhang 2018; ?) and graph-based un-
supervised learning (Hamilton, Ying, and Leskovec 2017a;
Veličković et al. 2019). The reader is referred to a com-
prehensive literature review (Bronstein et al. 2017) and
extensive surveys (Hamilton, Ying, and Leskovec 2017b;
Battaglia et al. 2018; Zhang, Cui, and Zhu 2018; Wu et al.



Figure 1: Difference between modelling chemical reactions using undirected and directed hypergraphs. Vertices represent chem-
ical substances. To the left is the undirected hypergraph, in which both reactants and products are present in the same hyperlink.
Whereas in the directed hypergraph (right), for a given reaction, the reactants are connected by one hyperlink and products are
connected by another hyperlink and both hyperlinks are connected by a direction. Please see Introduction for more details.

2019; Sun et al. 2018; Zhou et al. 2018) on this topic. Hy-
pergraph neural networks approximate the input hypergraph
by its clique expansion and is a GCN-based method for hy-
pergraphs (Feng et al. 2019).

Link Prediction on hypergraphs: Machine learning
on hypergraphs was introduced in a seminal work (Zhou,
Huang, and Schölkopf 2006) that generalised the power-
ful methodology of spectral clustering to hypergraphs. Link
prediction on hypergraph (hyperlink prediction) has been es-
pecially popular for social networks to predict higher-order
links such as a user releases a tweet containing a hashtag (Li
et al. 2013) and to predict metadata information such as tags,
groups, labels, users for entities (images from Flickr) (Arya
and Worring 2018). Techniques for hyperlink prediction on
social networks include ranking for link proximity informa-
tion (Li et al. 2013) and matrix completion on the incidence
matrix of the hypergraph (Arya and Worring 2018).

Coordinated matrix minimisation (CMM) predicts hyper-
links in the adjacency space with non-negative matrix fac-
torisation and least square matching performed alternately
in the vertex adjacency (Zhang et al. 2018). CMM uses ex-
pectation maximisation algorithm for optimisation for hy-
perlink prediction tasks such as predicting missing reac-
tions of organisms’ metabolic networks. For a hypergraph,
it has been shown that an n-tuple-wise similarity func-
tion cannot be linear (Tu et al. 2018; ?). Recent research
has extended the notion of graph Laplacian to hypergraphs
through diffusion processes for undirected (Louis 2015;
Chan et al. 2018) and directed (Chan et al. 2017) hyper-
graphs.

Our Setup
In this section, we discuss the problem setting of hyperlink
prediction in undirected and directed hypergraphs.

Undirected hyperlink prediction
An undirected hypergraph is an ordered pair H = (V,E)
where V = {v1, · · · , vn} is a set of n vertices and E =
{e1, · · · , em} ⊆ 2V is a set of m hyperlinks. The prob-

lem of hyperlink prediction in the incomplete undirected
hypergraph H involves predicting missing hyperlinks from
Ē = 2V − E based on the current set of observed hyper-
links E. Clearly, the number of vertices in any given hyper-
link e ∈ E can be any integer between 1 and 2n. This vari-
able cardinality of a hyperlink makes traditional link predic-
tion methods (on simple graphs) infeasible because they are
based on exactly two input features (those of the two nodes
potentially forming a link).

Fortunately, in practical cases, there is no need to con-
sider all the hyperlinks in Ē as most of them can be easily
filtered out (Zhang et al. 2018). For example, for the task of
finding missing metabolic reactions, we can restrict hyper-
link prediction to all feasible reactions because the infeasible
reactions seldom have biological meanings. The number of
restricted hyperlinks in such practical cases is not exponen-
tial and hence hyperlink prediction on the restricted set of
hyperlinks becomes a feasible problem.

Formally, a hyperlink prediction problem (Zhang et al.
2018) is a tuple (H, E), where H = (V,E) is a given in-
complete hypergraph and E is a set of (restricted) candidate
hyperlinks with E ⊆ E . The problem is to find the most
likely hyperlinks missing in H from the set of hyperlinks
E −E. The state-of-the art method for the problem is the co-
ordinated matrix minimisation (CMM) algorithm (Zhang et
al. 2018) and uses the expectation-maximisation technique
to predict hyperlinks. CMM assumes the presence of all can-
didate hyperlinks during training and cannot handle unseen
hyperlinks at test time.

Our method viz., NHP, on the other hand, does not need E
and learns a function on the hyperlinks and hence can handle
unseen hyperlinks at test time.

Directed hyperlink prediction

A directed hypergraph (Gallo et al. 1993) is an ordered pair
H = (V,E) where V = {v1, · · · , vn} is a set of n vertices
and

E = {(t1, h1), · · · , (tm, hm)} ⊆ 2V × 2V



Figure 2: (best seen in colour) An example of two different hypergraphs resulting in the same weighted
clique expansion. Both hypergraphs have 6 vertices and 4 hyperedges each. The hypergraph on the left
side consists of {1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {2, 4, 6} as its hyperedges. The hypergraph on the right contains
{1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {4, 5, 6} as its hyperedges. The two hypergraphs have the same connections in their clique ex-
pansions (as shown in the middle). Moreover, the (normalised) weights on the edges of the clique expansions are also the same
( 23 each). Please see Section NHP: Neural Hyperlink Predictor for more details.

is a set of m directed hyperlinks. Each e ∈ E is denoted by
(t, h) where t ⊆ V is the tail and h ⊆ V is the head with
t 6= Φ, h 6= Φ. As shown in Figure 1, chemical reactions
can be modelled by directed hyperlinks with chemical sub-
stances forming the set V . A directed simple link is the spe-
cial case when |t| = |h| = 1. Given an incomplete directed
hypergraph H = (V,E), the problem of directed hyperlink
prediction is to predict the missing hyperlinks in H .

NHP: Neural Hyperlink Predictor
In this section, we explain the proposed framework NHP.
NHP-U refers to the setting of undirected hyperlink predic-
tion and NHP-D refers to the directed setting.

NHP-U
A schematic view of NHP-U is shown in Figure 3. It consists
of three components, viz. network embedding, hyperlink-
aware embedding, and a tuple-wise interaction function.

Network embedding initialisation: We convert the input
(incomplete) hypergraph into its clique expansion (Zhou,
Huang, and Schölkopf 2006; Agarwal, Branson, and Be-
longie 2006). The clique expansion of a hypergraph intro-
duces a (weighted / normalised) clique for each hyperlink
of the hypergraph. Once the clique expansion is obtained,
popular unsupervised embedding methods such as Deep-
Walk (Perozzi, Al-Rfou, and Skiena 2014), LINE (Tang et
al. 2015), and node2vec (Grover and Leskovec 2016) can be
used to obtain the initial embeddings of the vertices. Alter-
natively, one may use trainable deep models such as graph
convolutional networks (GCNs) (Kipf and Welling 2017), or
graph attention networks (Veličković et al. 2018) to obtain
the initial embeddings.

Hyperlink-aware embedding (GCN layer): The clique
expansion of a hypergraph introduces pairwise connec-
tions between every vertex pair in each hyperlink of
the hypergraph. Because of the pairwise connections,
the embedding initialisations obtained from the previ-
ous component do not consider each hyperlink as a
unit (in which vertex connections go beyond pairwise).
As a simple example two hypergraphs H1 = (V,E1)
and H2 = (V,E2) with V = {1, 2, 3, 4, 5, 6},
E1 = {1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {2, 4, 6}} and E2 =
{1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {4, 5, 6} result in the same
weighted clique expansions and hence the network embed-
ding initialisations would be the same.

We propose to address the above issue by refining the em-
bedding initialisations with a GCN layer on the subgraph ob-
tained from the clique expansion of each hyperlink and then
passing the embeddings to a trainable tuple-wise interaction
function. In other words, given a hyperlink e, we refine the
embedding of each vertex v ∈ e using the following GCN
equation of neural message-passing (Gilmer et al. 2017):

h(e)v = ReLU
(
WGCN

∑
u∈e

xu + bGCN

)
(1)

where xv is the network embedding initialisation obtained
from the previous component. This is highlighted by dif-
ferent colours in Figure 3. We then pass the set of refined
embeddings {h(e)v : v ∈ e} for each hyperlink e ∈ E to a
tuple-wise interaction function described below.

Tuple-wise interaction function (INT layer): We note
that the previous component, viz. hyperlink-aware embed-
ding, still does not preserve the higher order relationships
among the vertices of a given hyperlink e ∈ E. We thus pro-
pose to use a trainable interaction function, Ie, to preserve



Figure 3: (best seen in colour) NHP for undirected hyperlink prediction. The input hypergraph is converted to its clique expan-
sion to get the initial embeddings on the vertices of the hypergraph. The initialisations are then fed to a GCN layer that refines
the embeddings on the subgraph obtained from the clique expansion of each hyperlink (highlighted by different colours). The
INT layer is the interaction layer which assigns a score to each hyperlink. The interaction score on each hyperlink is desired to
be higher than that for any set of vertices that does not form a hyperlink. Please see the section entitled NHP: Neural Hyperlink
Predictor for more details.

the higher-order relationships in the input hypergraph. The
function takes the form

Ie = σ

(
W · f

({
h(e)

}
v∈e

)
+ b

)
(2)

where W is a parameter of dimension 1 × d and σ is the
sigmoid function. Intuitively, the interaction score, Ie, for
hyperlink e, ideally, needs to be higher than that for any set
of vertices that does not form a hyperlink in the hypergraph.

The value Ie is high if the learned W is well-aligned to
the function f . Thus we propose to use the mean of the em-
beddings of a hyperlink e as the function f i.e.,

Ie := σ

(
1

|e|
W ·

∑
v∈e

h(e)v + b

)
. (3)

However, the function in Equation 3 does not guaran-
tee that the vertices in a hyperlink have similar embed-
dings. Motivated by the similarity-based hypergraph Lapla-
cian proposed in literature (Louis 2015; Chan et al. 2018),
we also propose the following function, which ensures that
the vertices in a hyperlink have similar embeddings.

Ie := σ

(
1

|e|
W ·maxmin{h(e)v }v∈e + b

)
. (4)

where given a set of vectors x1, · · · , xk ∈ Rd, the function

maxmin{xj : j ∈ [k]} = (max
s∈[k]

xsl −min
i∈[k]

xil)l=1,···,d (5)

is the element-wise difference of maximum and the mini-
mum values of the vectors. The tuple-wise interaction func-

tion is precisely what enables NHP to handle unseen hyper-
links at test time which the existing approaches (Zhang et al.
2018; Zhou, Huang, and Schölkopf 2006) cannot.

Optimisation: Hyperlinks in the input hypergraph repre-
sent known interactions among the vertices of the hyperlink.
The set of unknown interactions i.e., 2V − E may, in fact,
contain undiscovered hyperlinks and belong to the existing
ones. Following prior work (Liu et al. 2017), we rely on a
ranking objective as follows:

L =
1

|E|
∑
e∈E

Λ

(
1

|F |
∑
f∈F

If − Ie
)
. (6)

where F is a set of sampled vertex sets from 2V −E. The no-
tation Λ(x) is used to denote a non-decreasing function such
as the popular logistic function Λ(x) = log(1+ex). The loss
L above tries to maximise the number of hyperlink interac-
tion scores (inE) that are higher than the average interaction
score of the unknown vertex sets in F . It ranks the observed
hyperlinks above the unobserved ones. The loss function in
Equation 6 is more reliable than a strict binary classification
objective as pointed out in the prior work (Liu et al. 2017).
All parameters / weights of NHP-U i.e WGCN and W are
learned end-to-end using stochastic gradient descent.

Sampling method: We give the method to construct the
set F . For each hyperlink e ∈ E, we create a corresponding
f ∈ F by having half of the vertices i.e., |e|2 sampled from
e and the remaining half from V − e. This sampling method



is motivated by the chemical reaction datasets where it is
highly unlikely that half of the substances of a valid reaction
(from e) and randomly sampled substances (from V − e)
are involved in another valid reaction. To avoid any possible
bias in the hyperlink sizes, we ensure that each hyperlink e
has a “corresponding” vertex set f of the same size. We now
extend the proposed approach for directed hypergraphs.

NHP-D
NHP-D consists of four components three of which are net-
work embedding, hyperlink-aware embedding, and a tuple-
wise interaction function. The fourth component is the direc-
tion prediction component to predict direction between two
hyperlinks (e.g.: direction from reactants to products in re-
action data). We follow the same procedure for the network
embedding initialisation and hyperlink-aware embedding as
described for NHP-U. Note that for initialisation, we treat
each directed hyperlink as an undirected hyperlink (union of
tail and head). For the tuple-wise interaction function, we
use the difference between the element-wise maximum in
tail and minimum in head hyperlinks (Zhang et al. 2017;
Chan et al. 2017). In other words, for a directed hyperlink
e = (t, h), Ie = σ(W ·maxmin+{h(e)v }v∈e + b) where

maxmin+{xv}v∈e = (max
s∈t

xsl −min
i∈h

xil)+,l=1,···,d

and m+ = m if m > 0 and m+ = 0 if m ≤ 0.

Direction prediction: We propose the bilinear form

Dpq = σ
(
pT WBL q + bBL

)
(7)

to predict direction between two hyperlinks where p,q ∈
Rd are the hyperlink embeddings of hyperlinks p, q ⊆ V re-
spectively, σ is the sigmoid non-linearity andWBL ∈ Rd×d,
bBL are the bilinear weight and bias respectively. We use the
mean of the embeddings of a hyperlink to get the embedding
of the hyperlink i.e., p =

∑
v∈p h

(p)
v . We use a similar rank-

ing objective to predict directions i.e.

Ldir =
1

|E|
∑

(t,h)∈E

Λ

(
1

|F |
∑

(p,q)∈F

Dpq −Dth

)
(8)

We use a joint optimisation strategy to get the tuple-
wise interaction score Ie and the direction score Dth for
an ordered pair e = (t, h) i.e. we minimise L + λLdir

using back-propagation. The parameters of the model i.e.
WGCN ,W,WBL are all updated end-to-end using back-
propagation.

Inference: At test time, NHP-U and NHP-D predict a hy-
perlink e as positive (existing) if its score is higher than the
average score of the unobserved links (used for training),
otherwise it predicts it as negative (non-existing). A similar
step is used by NHP-D for predicting directions.

Computational complexity
For the given input (incomplete) hypergraph (V,E), let

N1 =
∑
e∈E
|e| and N2 =

∑
e∈E

1

2
· |e| ·

(
|e| − 1

)
where for a directed hyperedge (t, h) ∈ E, we define |e| :=
|t|+ |h|.

Our negative sampling strategy (pre-processing step)
takes O(N1) time. The GCN layer takes O(N2) time, the
INT layer and additionally the bilinear layer for NHP-D
take O(N1) time each. Once all the hyperedge scores are
obtained, computing the loss takes O(|E|) time. Hence the
computation complexity of NHP is O(N1 +N2 + |E|).

Assuming sparse real-world hypergraphs, i.e., |E| ∈
O(|V |) and |e| ∈ O(1) for each hyperedge e ∈ E, our
NHP takes O(|V |) time.

Datasets and motivation
We used a knowledge graph, a co-authorship network, and
three chemical reactions networks (one organic and two
metabolic) as datasets for our experiments. The statistics of
the datasets are shown in Table 1. Note that we used chemi-
cal reaction networks as both directed and undirected hyper-
graphs. We used the knowledge graph as a directed hyper-
graph and a co-authorship network as an undirected hyper-
graph for a total of 4 undirected and 4 directed hypergraph
experiments. The motivation and the construction of these
datasets are pushed to the supplementary.

Experiments
On all the real-world datasets, we report mean AUC and Re-
call@k (k is the number of missing links) numbers averaged
over 10 random splits of train and test set of hyperlinks.
90% hyperlinks in each dataset was used for training and
the remaining 10% for testing the proposed models and all
the baselines. Hyper-parameters were optimised using cross-
validation and are shown in the supplementary material.

Experiments on directed hypergraphs
Since there are no proposed approaches for the problem, we
compared against the following baselines:
• node2vec: we used node2vec embeddings with the fol-

lowing tuple wise interaction function:

Ie = σ
( 1

|e|
∑

u,v∈e×e−{(w,w):w∈e}

xTuxv

)
where e = t ∪ h The above function considers all vertex
pairs for each hyperedge.

• node2vec-GCN: we used node2vec embeddings as ini-
tialisation to a GCN and then train the GCN’s parameters
with the previously mentioned interaction function. Note
that this baseline does not use the proposed tuple-wise in-
teraction functions viz., mean and maxmin+.

• node2vec-mean: we used node2vec embeddings as ini-
tialisation to a trainable tuple wise interaction function
which takes the mean of the vertex embeddings to learn
the weights



Table 1: Summary of the real-world hypergraph datasets used in the experiments.
Dataset Reverb45k DBLP USPTO iJO1366 iAF1260b
type of data knowledge graph co-authorship organic reactions metabolic reactions metabolic reactions
type of hypergraph directed undirected directed, undirected directed, undirected directed, undirected
number of vertices 28798 20685 16293 1805 1668
number of hyperlinks 66914 44337 11433 2583 2388

dataset→ iAF1260b iJO1366 USPTO
model ↓ AUC Recall@k AUC Recall@k AUC Recall@k
node2vec 0.52± 0.01 0.14± 0.05 0.52± 0.03 0.20± 0.03 0.53± 0.04 0.16± 0.02
node2vec-GCN 0.53± 0.01 0.17± 0.03 0.52± 0.01 0.23± 0.03 0.56± 0.03 0.18± 0.02
node2vec-mean 0.52± 0.03 0.18± 0.03 0.51± 0.03 0.22± 0.04 0.56± 0.04 0.17± 0.04
node2vec-maxmin+ 0.53± 0.01 0.21± 0.01 0.52± 0.01 0.24± 0.01 0.58± 0.02 0.24± 0.03
NHP-D-mean 0.55± 0.01 0.23± 0.05 0.54± 0.02 0.26± 0.02 0.60± 0.03 0.18± 0.03
NHP-D-maxmin+ 0.58± 0.02 0.26± 0.04 0.56± 0.01 0.28± 0.03 0.63± 0.02 0.25± 0.04

Table 2: Mean AUC and Recall@k values (higher is better) for link prediction in directed hypergraphs on the three chemical
reaction datasets. Our proposed method achieves superior performance compared to all the baselines.

model AUC Recall@k
node2vec 0.57± 0.01 0.40± 0.04

node2vec-GCN 0.62± 0.02 0.42± 0.03
node2vec-mean 0.65± 0.02 0.44± 0.05

node2vec-maxmin+ 0.75± 0.01 0.63± 0.04
NHP-D-mean 0.72± 0.05 0.45± 0.03

NHP-D-maxmin+ 0.81± 0.04 0.65± 0.03

Table 3: Average AUC and Recall@k values on the Re-
verb45k knowledge graph.

• node2vec-maxmin+: we used node2vec embeddings as
initialisation to a trainable tuple wise interaction function
which takes the element-wise difference of maximum (in
tail) and minimum (in head) of the vertex embeddings to
learn the weights. This baseline and the previous baseline
do not have the GCN layer.

We used the direction prediction component with all the
aforementioned baselines and learn the parameters WBL.
The results are shown in Table 2. As we can see, our pro-
posed NHP-D is able to outperform all the baselines justify-
ing all the components in our model. We also observe that
the models that use maxmin+ outperform the mean counter-
parts. This shows that making the vertex embeddings similar
makes it more effective to learn known interactions in the
hypergraph.

The results for the Reverb45k knowledge graph are shown
in Table 3. At test time, we introduced 10% directed hyper-
links which were clearly not canonicalised (e.g.: tail contain-
ing {Obama, Trump}) and head containing {UK, Brazil}).
The set of 10% missing hyperlinks union the above set of
negative hyperlinks formed the entire test set.

Statistical test We performed a Welch t-test (Welch 1947)
on our results. We compared our proposed best method
NHP-D-maxmin + with the most competitive baselines. The
p-values for all experiments and metrics (AUC and Re-

call@k) in Tables 2 and 3 were lower than 0.05 except the
following two:
• Recall@k for USPTO: p = 0.54

• Recall@k for Reverb45k: p = 0.22

This demonstrates the statistical significance of our results.

Experiments on undirected hypergraphs
The state-of-the-art methods for link prediction in undi-
rected hypergraphs are Co-ordinated matrix minimisation
(CMM) (Zhang et al. 2018), and Spectral Hypergraph Clus-
tering (SHC) (Zhou, Huang, and Schölkopf 2006). We com-
pared NHP-U against the following baselines:
• CMM (Zhang et al. 2018): This baseline uses the

expectation-maximisation algorithm in the adjacency
space to predict hyperlinks. It is inherently a transductive
algorithm i.e. it cannot handle unseen links at test time.

• SHC (Zhou, Huang, and Schölkopf 2006): This base-
line converts the input hypergraph into its dual so that hy-
perlink prediction can be posed as semi-supervised trans-
ductive vertex classification in the dual. It also inherently
cannot handle unseen links at test time.
We note that the two undirected methods viz., CMM and
SHC, are not embedding-based methods and hence, the
direction prediction component cannot be trivially used
to predict hyperlinks in directed hypergraph experiments.

• node2vec: we used node2vec embeddings with the fol-
lowing tuple wise interaction function:

Ie = σ
( 1

|e|
∑

u,v∈e×e−{(w,w):w∈e}

xTuxv

)
The above function considers all vertex pairs for each hy-
peredge.

• node2vec-GCN: we used node2vec embeddings as ini-
tialisation to a GCN and then train the GCN’s parameters
with the previously mentioned interaction function. Note



data dataset→ iAF1260b iJO1366 USPTO
model ↓ AUC Recall@k AUC Recall@k AUC Recall@k

H node2vec 0.57± 0.03 0.21± 0.05 0.53± 0.04 0.23± 0.03 0.53± 0.05 0.22± 0.03
H node2vec-GCN 0.59± 0.04 0.26± 0.03 0.56± 0.02 0.27± 0.02 0.56± 0.02 0.24± 0.04
H node2vec-mean 0.58± 0.03 0.24± 0.04 0.54± 0.02 0.27± 0.03 0.58± 0.03 0.23± 0.02
H node2vec-maxmin 0.61± 0.05 0.28± 0.03 0.60± 0.02 0.29± 0.03 0.68± 0.03 0.26± 0.01
(H, E) SHC 0.65± 0.01 0.31± 0.02 0.64± 0.01 0.33± 0.02 0.56± 0.01 0.22± 0.01
(H, E) CMM 0.64± 0.04 0.30± 0.14 0.64± 0.03 0.35± 0.10 0.68± 0.01 0.37± 0.01
H NHP-U-mean 0.60± 0.04 0.28± 0.06 0.61± 0.02 0.29± 0.02 0.65± 0.02 0.20± 0.05
H NHP-U-maxmin 0.64± 0.03 0.31± 0.03 0.63± 0.02 0.32± 0.02 0.74± 0.02 0.29± 0.02

Table 4: Mean AUC and Recall@k values (higher is better) for link prediction in undirected hypergraphs on the three chemical
reaction datasets. Our proposed method achieves comparable performance compared to the state-of-the-art baselines. SHC and
CMM need all the candidate hyperlinks during training and cannot handle unseen hyperlinks at test time. Our method achieves
comparable performance without using the candidates and can generalise to unseen hyperlinks at test time.

that this baseline does not use the proposed tuple-wise in-
teraction functions viz., mean and maxmin+.

• node2vec-mean: we used node2vec embeddings as ini-
tialisation to a trainable tuple wise interaction function
which takes the mean of the vertex embeddings to learn
the weights

• node2vec-maxmin: we used node2vec embeddings as
initialisation to a trainable tuple wise interaction function
which takes the element-wise difference of maximum and
minimum of the vertex embeddings in each hyperedge to
learn the weights. This baseline and the previous baseline
do not have the GCN layer.

Table 4 shows the results of the experiments on the undi-
rected hypergraphs. Our results demonstrate strong perfor-
mance across all the datasets. The state-of-the art baselines
viz., Co-ordinated matrix minimisation (CMM) (Zhang et
al. 2018), and Spectral Hypergraph Clustering (SHC) (Zhou,
Huang, and Schölkopf 2006), require all candidate hyper-
links (for reaction datasets) to be present during training.
Our proposed NHP and all the other proposed baselines, on
the other hand, can handle unseen hyperlinks at test time.
We particularly note that NHP is competitive with the re-
sults of SHC and CMM even if NHP does not use the set
of candidate hyperlinks, E , during training. We assume that
these benefits stem from the fact that, the proposed tuple-
wise interaction function is trainable from the input hyper-
graph. The interaction function enables us to handle unseen
hyperlinks at test time.

Results on DBLP co-authorship Table 5 shows the re-
sults. In a coauthorship network, there is no notion of “can-
didate” set of authors (which include “negative” collabora-
tions) who could potentially collaborate. SHC relies on a
strict binary classification objective and hence requires neg-
ative links. CMM requires candidate hyperlinks for training.
Hence these two baselines cannot be meaningfully used on
this dataset.

NHP-U, however, uses a ranking objective and the inter-
action function (INT layer) is precisely what enables it to
handle unseen hyperlinks at test time. Hence our method
and our proposed baselines can be used on this dataset. The

model Recall@k
node2vec 0.38± 0.03

node2vec-GCN 0.41± 0.04
node2vec-mean 0.41± 0.03

node2vec-maxmin 0.45± 0.06
SHC NA

CMM NA
NHP-U-mean 0.46± 0.04

NHP-U-maxmin 0.51± 0.05

Table 5: Average Recall@k values on dblp co-authorship
network. NA: not applicable. SHC relies on a strict binary
classification objective while CMM requires candidates.

p-value (Welch t-test) of NHP-U-maxmin on this dataset is
less than 0.01 with the most competitive baseline and hence
this demonstrates the statistical significance.

Approximate training time comparison On the largest
chemical reaction dataset, USPTO, NHP-U takes around 12
hours of training time, while SHC and CMM take around 1
day and 3 days respectively. The faster training time is due
to GPU compatibility (NHP is GPU friendly while SHC and
CMM are not).

Conclusion and future work

We have introduced NHP, a novel neural approach for hy-
perlink prediction in both undirected and directed hyper-
graphs. To the best of our knowledge, this is the first method
for link prediction in directed hypergraphs. NHP can effec-
tively handle unseen hyperlinks at test time.

Our NHP framework can easily use graph attention net-
works (Veličković et al. 2018) instead of GCNs and Deep-
Walk (Perozzi, Al-Rfou, and Skiena 2014) and LINE (Tang
et al. 2015) instead of node2vec. A future direction is to ex-
plore multi-relational directed hypergraphs in which direc-
tions can have labels.
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