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Abstract

Multidimensional event streams are common
in many applications such as content on so-
cial platforms. Existing models using Hawkes
processes and its variants often ignore impor-
tant information about the causal parents of
the events, which typically is readily available
in social media applications. These models
also ignore the disproportionate response cre-
ated by some of the rare events, such as the
impact of a “like” on a content by an influ-
encer. Addressing these limitations, this pa-
per proposes a novel Bayesian dIscRete Time
Hawkes (BIRTH) model, a Bayesian genera-
tive model for multidimensional event streams
data with causal information. Through its la-
tent variables, BIRTH is flexible enough to
capture contrasting responses invoked by mul-
tiple events of the same type. Moreover, being
a discrete-time model, the latent parameters
scale as O(#Timebins) in BIRTH as com-
pared to O(#events) for continuous-time pro-
cesses, thus scaling better in the settings when
the number of events is huge. For inference,
we propose a Gibbs sampling based inference
procedure for BIRTH, which is suitable when
the whole data can be processed together.
While a full variational inference procedure
is difficult to arrive at due to non-conjugate
factors in the posterior, we propose a Stochas-
tic hybrid Gibbs-Variational Inference (SVI)
algorithm, which is beneficial in the settings
where Gibbs might be expensive in terms of
memory requirements. SVI has per-iteration
memory complexity proportional to the cho-
sen minibatch size, and also extends easily for
online streaming settings of the data. We thor-
oughly evaluate BIRTH’s abilities over both
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synthetic and real-world social network event
streams. Specifically, on synthetic datasets we
demonstrate model fitting, recovery of planted
structure and identification of the rare events.
For a social network dataset we show signifi-
cantly higher likelihoods along with rare event
identification.

1 Introduction
Multi-dimensional temporal event streams are com-
mon in a variety of domains such as social net-
works [28, 23, 20], neuro-science [8], e-commerce [26],
finance [10, 1], to name a few. Having observed part of a
stream, modeling and predicting its future course helps
in various ways. For instance, predicting which posts
in a social media platform would go viral helps in re-
viewing them in a focused way leading to better quality
of content served to the users. While many approaches
focus more on engineering or synthesizing features to
make use of prediction algorithms [24, 15, 6, 18, 14, 5],
other approaches focus on modeling the evolution of the
streams using generative approaches such as Hawkes
Processes [9, 27, 20, 8, 17]. In this paper, we focus on
modeling event streams while addressing the shortcom-
ings of the existing methods. Our approach is generic
and extend well beyond the application considered but
for providing the reader with better clarity, we discuss a
running example of modeling content streams on social
media platforms throughout the paper.

A typical data sample observed in such streams is of the
following form: S = {(ti, ki) |ti ∈ R, ki ∈ [K] , i ∈ [N ]},
where N denotes the total number of events, K de-
notes the total number of event-types, the tuple (ti, ki)
represents the ith event where ti and ki denote the
time and event type respectively. S is said to be a
multi-dimensional event stream if K > 1. We make the
following observations. First, in some of the domains,
we also get to observe the causal parent for each event.
For example, in the context of social networks where
the event types constitute activities such as Reshares,
Likes, Comments, Views on the shared content, typical
events are in the following form: Member A viewed the
post x because one of A’s connections, member B, has
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liked the post x. The post x, in turn, might have been
shared by one of B’s connections. The presence of these
additional causal parent information is not typically
exploited in many existing models. Second, the size
of the data (N) in such applications is huge, which
makes continuous-time techniques such as multivariate
Hawkes processes [13, 20, 4] difficult to scale and they
also ignore causal parent information. The best known
technique [13] scales linearly in the number of events,
which may still be expensive in scenarios such as viral
event modeling. For example, in a social media set-
ting, for viral streams the number of events can be in
order of millions and typically all these events occur
within a short duration (say one month). Continious
time models have to process all these events for all
the streams, hence they face a scalability issue. On
the other hand, discretising these event into time bin
(of one minute) brings down the scale from millions
to thousands. This motivates one to consider discrete
time variants of Hawkes processes [16]. Third, Hawkes
models usually assume that the future influence of an
event is determined by the event-type alone. While
this may be modified to some extent by taking into
account any marks or contextual features specific to the
event [23], it does not yet completely capture the vari-
ability where two events of the same type and features
may invoke completely different response for example
in viral event modeling. In this paper, we make use
of these observations and propose a novel graphical
model addressing the limitations of the existing models.
Specifically, we make the following contributions:

1. We propose BIRTH, a Bayesian Hawkes process
with latent states for modeling multidimensional
causal event streams (See Algorithm 1). In BIRTH,
each event is mapped into a latent state through
Multinomial sampling, which in turn captures the
influence it has towards the future events. This
removes the limitation that all events of the same
type has similar influence throughout the process.

2. To estimate the model parameters and the latent
variables of BIRTH, which has non-conjugate prob-
ability distributions, we first propose a Gibbs sam-
pling based algorithm. This procedure utilizes
complete data in each of the iterations and recov-
ers model parameters with low variance, hence,
useful when the data fits into memory.

3. Additionally, we propose a stochastic hybrid Gibbs-
Variational inference (SVI) based procedure (see
Algorithm 2), which works with minibatches of
that data and thus has O(1) memory requirement
for each of its iteration, making the procedure scal-
able for large datasets. This procedure naturally
extends to an online settings (see Section 5.2) and

uses gradient descent to update the global param-
eters of the model, while using Gibbs iterations to
optimize the time-specific latent variables.

4. We illustrate the efficacy of the modeling approach
on a real dataset consisting of viral event streams,
which demonstrate that BIRTH comprehensively
beats competetive baselines in terms of data like-
lihood, and also capture events which create dis-
proportionate responses. Additionally, we also
illustrate the efficacy of the algorithms proposed
on simulated datasets.

2 Problem Setup
Over a finite time horizon divided into equally spaced
time bins of length ∆ > 0, we consider a dataset D of
M samples. The mth data sample, denoted by D(m),
is defined below:

D(m) = {Dt,k(m)|k ∈ [K], t ∈ [T ]} ,where (1)

Dt,k(m) =
{
s
(0)
t,k (m)

}⋃{
s
t′,k′
t,k (m)

∣∣∣∣k′ ∈ [K], t
′
< t

}
.

Here, [x] = {1, . . . , x}, T denotes the maximum number
of time bins, Dt,k(m) denote the observations made for
the mth data sample at time bin t towards an event
type k. Dt,k(m) consists of the following: 1 (a) s(0)

t,k ,
the total number of events of type k at bin t which
are due to exogenous (external) factors, and (b) st

′,k′

t,k ,
the total number of events of type k at bin t which are
caused by an event of type k′ occurred in bin t′ < t.
Denoting by Et,k (m), the set of all events of type k
for the mth sample at the time bin indexed by t, the
quantities s(0)

t,k and st
′,k′

t,k are formally defined as below:

s
(0)
t,k (m) =

∣∣ {e ∈ Et,k(m)| e is exogenous}
∣∣, (2)

s
t′,k′
t,k (m) =

∣∣ {e ∈ Et,k(m)| ∃e′ ∈ Et′,k′ (m) s.t., e′ → e
} ∣∣, (3)

where, |.| is the cardinality of the set, e→ e′ denotes
that the event e causes e′.

We assume that when ∆ is sufficiently small, st
′,k′

t,k = 0
for t′ = t. This is true in many applications such as so-
cial media, where the feed ranking system has inherent
delays, thus a member A will be able to view an activity
of his connection B only after the delay. As a conven-
tion throughout this paper, we use the common variable
name s to denote counts of various quantities, where
the superscripts denote the qualifiers for the source
(bin, event-type, state, etc.), and subscripts denote the
target bin, event-type. In the same notation, the total
number of events of type k at time bin t, denoted by
st,k (m) equals s(0)

t,k (m) +
∑
t′<t, k′∈[K] s

t′,k′

t,k (m).

In this paper, we aim to study generative models for (1)
under settings such as social media viral streams, where

1We sometimes avoid explicitly specifying the sample
number m on the counting variables s for ease of reading.
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there may exist rare events which invoke disproportion-
ately high endogenous responses. As a representative
example, we show a real world plot (Figure 1, left)
of cumulative views (normalized) of posts in a social
media platform vs time. It is clearly seen that while
some of the sequences increase consistently, few oth-
ers observe sudden jumps in their number of views,
which are attributed to such rare events creating huge
amounts of response (child events).

3 Existing Approaches
Point processes such and Poisson and Hawkes serve as
effective tools for modeling temporal event streams [22,
10], which capture the self-exciting and mutually-
exciting behavior among multiple event types. Since
we know the causal information for the events in the
dataset (1), one may model the counts st

′,k′

t,k as Pois-

son random variables: st
′,k′

t,k ∼ Poisson
(
λt
′,k′

t,k

)
, where

λt
′,k′

t,k denotes the rate of the arrivals. As simple choices,

the rate λ may be modeled as λt
′,k′

t,k = st′,k′wk′,k or

λt
′,k′

t,k = st′,k′wk′,k,t−t′ , where w denotes the expected
offspring rate between the subscripted variables. The
latter choice is useful if the dataset (1) satisfies that
st
′,k′

t,k = 0,∀t > t′+L for any L > 0. dataset (1). These
models for the rate function fail to explicitly capture
the correlation in the arrivals across different event-
types, and across different time bins. Another model
for the rate function is through combination of mul-
tiple basis kernels: λt

′,k′

t,k = st,kwk′,k
∑
b∈[B] φb(t− t′),

where φb denotes the bth kernel. This modeling choice
may also be interpreted as discrete-time equivalent of
Hawkes processes [16]. In all these approaches, λt

′,k′

t,k is
a deterministic quantity once the models are specified,
which limits their expressive power to capture scenarios
such as rare influential events, which is the particular
setting of interest in this paper.

Clustering Hawkes process: In a continuous-time
setting, Du et al. [7] studied Dirichlet Hawkes Pro-
cess (DHP) in the context of clustering documents in
a stream, which was extended by Mavroforakis et al.
[19] towards a hierarchical setting (HDHP). In DHP
and HDHP, each event is mapped to an existing or
new cluster through sampling from a stick-breaking
prior, and the future influence of such event is charac-
terized by the properties of the cluster. These modeling
choices allow for the instantaneous arrival rate of an
event-type k at time x ∈ R+, denoted as λ̃(x, k) to be
random even after completely specifying the history
of all events until the time x. One drawback of these
approaches is the continuous-time setting, which limits
the scalability. In addition, the clusters do not have
any specific structure or interpretation. Whereas, in
our case, we wish to model different latent states of
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Figure 1: Examples of real world event streams (left)
and generated event streams (right) along with pre-
dicted rare events. Please refer to Section 6 for more
details.

the process with a specific structural assumption: the
rarer a state is, more is the influence towards future
events.

4 BIRTH - A Latent Hawkes Model

In this section, we propose Bayesian dIscRete Time
Hawkes process (BIRTH), which addresses the limita-
tions of aforementioned approaches for modeling the
dataset (Equation 1). Specifically, we allow the rate
λt̃,k̃t,k to be a random variable, which depends on the
assigned latent state of each event.

4.1 Model Formulation

BIRTH follows a discrete time setup similar to that
of [16]. We make the following assumptions:

1. Exogenous events s
(0)
t,k of type k are gener-

ated by a Poisson process with constant in-
tensity λ

(0)
k ∆ with bin size ∆, as s

(0)
t,k ∼

Poisson(λ
(0)
k ∆) (4)

2. Each event e ∈ Et,k is associated with a latent
state, denoted by ze ∈ [Z]. We denote st,k,z =
|{e ∈ Et,k|ze = z}|. Note that

∑
z∈[Z] st,k,z = st,k,

the total number of events of type k at time t. st,k,z
is modeled as a Multinomial random variable:

[st,k,z ]
Z
z=1
∼ Mult (st,k, ηt,k) , (5)

where ηt,k ∈ RZ denotes the Multinomial class
probabilities, which are typically provided as a
prior.

3. Each event e ∈ Et,k, through the mapped latent
state ze, causes future events e′ ∈ Et′,k′ for t′ ∈
[t, t + L], k′ ∈ [K], where L denotes the support
for endogenous responses. We define

s
t,k,z

t′,k′ =
∣∣{e′ ∈ Et′,k′ |e ∈ Et,k, (ze = z) , (e→ e

′
)
}∣∣ .

We make the following generative assumption:

s
t,k,z

t′,k′ ∼ Poisson(λ
t,k,z

t′,k′ ), (6)

where λt,k,z
t′,k′ = st,k,zwz,k′φ

(
t
′ − t

)
∆.
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Here, wz,k′ is the expected number of offsprings
from a latent state z to an event type k′, and φ(.)
denotes the time decay kernel, which is assumed
to be a probability mass function having a finite
support of L time bins.

4. The kernel function φ(.) is a convex com-
bination of B basis kernels, each of which
is a probability mass function with sup-
port L given as φ(.) =

∑B
b=1 gz,k′,bφb(.), where∑

b gz,k′,b > 0 and
∑
b gz,k′,b = 1. Combin-

ing this with Equation (6), we see that
λt,k,zt′,k′ =

∑B
b=1 (st,k,zwz,k′ gz,k′,b φb[t

′ − t]∆). By
the superposition principle of poisson processes
[12], this is equivalent to sum of B independent
Poisson processes, each corresponding to a basis
kernel function φb. We make this precise by defin-
ing the latent variables:
s
t,k,z,b

t′,k′ (m) =
∣∣{e′ ∈ Et′,k′ (m)|e ∈ Et,k(m), (ze = z) , (e→b e

′
)
}∣∣

(7)

where e →b e means that e causes e′ via the
Poisson process corresponding to the bth basis
kernel φb. The generative process, in turn, may
be written as follows:

s
t,k,z,b

t′,k′ ∼ Poisson(λ
t,k,z,b

t′,k′ ), (8)

λ
t,k,z,b

t′,k′ = st,k,zwz,k′gz,k′,bφb
(
t
′ − t

)
∆. (9)

Note that
∑Z,B
z=1,b=1 s

t,k,z,b
t′,k′ = st,kt′,k′ , which is

known.

Model variables: The sample-specific latent vari-
ables according to the generative assumptions above are
S0 = {st,k,z}, S1 =

{
st,k,z,bt′,k′

}
. The global parameters

are given by Λ(0) = {λ(0)
k }, W = {wz,k′}, G = {gz,k′,b}

which are provided with the following conjugate priors:

Λ
(0) ∼ Gamma

(
α

(Λ)
, β

(Λ)
)
,

wz,k′ ∼ Gamma
(
α

(w)
z , β

(w)
z

)
, gz,k′,b ∼ Dirichlet

(
α

(g)
z

)
(10)

where, α(w), β(w) ∈ RZ and α(g)
z ∈ RB . α(w)

z ∈ R is the
zth entry of α(w), similarly for β(w). We collectively
denote the set of latent variables and global parameters
as Θ =

(
Λ(0),W,G, S0, S1

)
. The full generative process

is described in Algorithm 1.

Likelihood: The likelihood L (D(m)) of the mth data
sample (1) according to the generative model is given
as follows:

L (D(m)) =

T,E∏
t=1,k=1

Lt,k (D(m)) ,where (11)

Lt,k (D(m)) = p
(
s
(0)
t,k (m) |λ(0)

k (m)
)
p
(

[st,k,z (m)]
Z
z=1
|st,k (m)

)
t+L,E,Z,B∏

t′=t+1,k′=1,z=1,b=1

p
(
s
t,k,z,b

t′,k′ (m) |λt,k,z,b
t′,k′ (m)

)
t+L,K∏

t′=t+1,k′=1

1

∑
z,b

s
t,k,z,b

t′,k′ (m) = s
t,k

t′,k′ (m)

 ,

Algorithm 1: Generative Algorithm
Input: Priors for Global model parameters;

α(w), β(w), α(λ(0)), β(λ(0)), α
(g)
z , ηt,k;

Output: D as defined in Equation 1.
Initialize: Global parameters;

Sample λ(0)
k ∼ Gamma

(
α

(
λ

(0)
k

)
, β

(
λ

(0)
k

))
, ∀k;

Sample wz,k′ ∼ Gamma
(
α

(w)
z , β

(w)
z

)
, ∀z, k′;

Sample [gz,k′,b]
B
b=1 ∼ Dirichlet

(
α

(g)
z

)
, ∀z, k′;

for t ∈ [Tm], k ∈ [K] do
Sample s(0)

t,k using (4);

Set st,k = s
(0)
t,k +

∑
t̃<t,k̃,z̃,b̃ s

t̃,k̃,z̃,b̃
t,k ;

Sample st,k,z, ∀z, using (5);
Compute λt,k,z,bt′,k′ , ∀t′ − t ∈ [1, L], z, b, k′, as in (9);
Sample st,k,z,bt′,k′ using (8) ∀t′ ∈ [t+ 1, t+ L], z, b, k′;

end

and the intensity functions λt,k,z,bt′k′ are given by (9).
We combine the data likelihood (11) with the priors
on the global parameters to arrive at the posterior
distribution:

p(Λ
(0)
,W,G, S0, S1|D) = p

(
Λ

(0)
)
p(W )p(G)

M∏
m=1

L (D(m)) . (12)

Discussion:

1. The influence of any event towards future events
is assumed to be captured by the assigned latent
state. For example, a frequently occurring latent
state might be expected to produce smaller number
of offsprings than one which is rarer and produces
disproportionately high number of offsprings.

2. In (4), the assumption that λ(0)
k is time inde-

pendent is not a limiting factor. One may ob-
serve from (11) that the estimation of λ(0)

k is com-
pletely independent of the remaining parameters
and latent variables. In fact, due to the conjugate
prior, the posterior distribution of λ(0)

k denoted by
p
(
λ

(0)
k |s

(0)
t,k

)
equals

Gamma

α(λ(0)
k

)
+
∑
m,t,k

s
(0)
t,k (m) , β

(
λ

(0)
k

)
+ ∆

∑
m

Tm


(13)

The assumptions about λ(0)
k may be relaxed with-

out impacting the rest of inference procedures.
3. The assumption in (5) differentiates BIRTH from

HDHP [19], where the latter creates clusters
among events through a Dirichlet process which
can interpreted as topics. BIRTH, instead has an
embedded notion through the priors

(
α

(w)
z , β

(w)
z

)
that the latent states capture differences in the off-
spring produced. Our method differs from HDHP
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in the fundamental problem we are tackling, we
aim to model the disproportionate responses to
different events as latent states.

4. The assumption that φ has a finite support of
size L is typically valid in many applications. For
example, in many popular social media, the feed
ranking mechanism which decides the ordering of
content on social media gives less priority to older
content. Hence, as time elapses the effect of older
content decreases, which in other words is equal
to lower number of offsprings. The support size
L can be chosen based on the statistics from the
data such that this assumption holds true.

5. The posterior distribution (12) has non-conjugate
factors p([st,k,z]

Z
z=1) and p(st,k,z,bt′k′ ). Hence, a full

variational inference [25] procedure with mean field
distribution for the variables is complicated.

5 Inference
In this section, we derive the inference procedure for
BIRTH. As we discussed earlier, estimation of Λ(0) may
be handled independent of the rest of the variables. The
posterior distribution for Λ(0) is given in (13). Hence,
we shall leave out Λ(0) in our remaining discussion.

5.1 Gibbs Sampling

As a simple iterative scheme, Gibbs sampling [2] sim-
ulates the global and latent variables of the model by
sampling from their corresponding conditional poste-
rior distributions. Recall that Θ =

(
Λ(0),W,G, S0, S1

)
denotes the set of all latent variables and parameters.
The conditionals forW,G, S1 are given are given below:

wz,k′ |
(
Θ \ wz,k′

)
∼ Gamma

(
α

(w)
z + ν

(1)

k′ , β
(w)
z + ν

(2)
)
, (14)

where ν(1)

k′ =
∑

m,t,t′,k,b

s
t,k,z,b

t′,k′ (m) , ν
(2)

=
∑
m,t,k

st,k,z (m)

gz,k′ |
(
Θ \ gz,k′

)
∼ Dirichlet

(
γ

(g)

z,k′

)
, (15)

where γ(g)

z,k′ =

α(g)
z +

∑
m,t,k,t′

s
t,k,z,b

t′,k′ (m)

B
b=1[

s
t,k,z,b

t′,k′

]
z,b
|
(

Θ \
[
s
t,k,z,b

t′,k′

]
z,b

)
∼ Mult

(
ã, b̃
)
, (16)

where ã = s
t,k

t′,k′ , b̃ ∝ st,k,zwz,k′ gz,k′,b φb
(
t
′ − t

)
For the variables st,k,z, we sample from their condi-
tional posterior after marginalizing out the variables S1.
By Bayes rule, we have the following expression, where
the factors ξ(1) and ξ(2) denote the prior for st,k,z and
likelihood of the data D given st,k,z respectively:

p
(
[st,k,z ]

z
|W,G,D, ηt,k

)
∝ p

(
[st,k,z ]

z
; st,k, ηt,k

)
p
(
D|st,k,z,W,G

)
(17)

While the prior on st,k,z is a Multinomial, the likeli-
hood of the data given st,k,z is Poisson, which makes
the sampling st,k,z from (17) not straightforward. To

address this, we adapt a simple Metropolis Hastings
strategy [2] to get the samples, which is detailed in the
supplementary material.

5.2 Variational Inference

In this subsection, we propose a hybrid Gibbs-
variational inference algorithm similar to that of Mimno
et al. [21] to infer the optimal parameters of (12). Vari-
ational procedures [3] maintain a distribution about
the parameters to be estimated, which is denoted
by q(Θ; Ψ), where Ψ are the parameters of the q-
distribution. We restrict q distribution to the families
which factor as follows:

q (Θ; Ψ) =
∏
z,k′

q
(
wz,k′

) ∏
z,k′

q
([
gz,k′,b

]
b

)
∏

t,k,t′,k′
q

(
[st,k,z ]

z
,
[
s
t,k,z,b

t′,k′

]
z,b

)
. (18)

Note that (18) is different from the usual mean field
assumption, which assumes the q-distribution to be fac-
torized with respect to all variables. Instead, we assume
that the latent variables st,k,z and st,k,z,bt′,k′ are coupled
with respect to the dimensions z, b in (18). Varia-
tional approaches aim to find the best q-distribution
(18) which explains the data by solving the following
problem:

max
Ψ
Q (Ψ) , Eq [log p (D,Θ)]− Eq [log q (Θ)] . (19)

Here, Q denotes the evidence lower bound (ELBO),
which is a function of the q-distribution.

5.3 Natural Gradient Ascent

For notational convenience, we split Θ into ΘG and ΘV ,
representing the global parameters and latent variables
respectively. Similarly, we denote the corresponding
parameters for the q-distribution as ΨG ,ΨV . In this
notation, Q(ΨG ,ΨV) = Q(Ψ). To solve the problem
(19), we follow a gradient ascent based approach on
ΨG . Note that (19) can be equivalently rewritten as
follows:

max
ΨG

f (ΨG) ,where f (ΨG) = Q
(
ΨG ,Ψ

∗
V (ΨG)

)
, max

ΨV
Q (ΨG ,ΨV)

The gradient of f may be computed as ∇f (ΨG) =
∇ΨGQ (ΨQ,Ψ

∗
V (ΨG)), where Ψ∗V (ΨG) is the maximiser

of Q (19) with respect to ΨV while fixing ΨG . Instead
of the gradient, we use the natural gradient for as-
cent, which has been shown to have better convergence
properties [11].

Computation of the natural gradient: Let
q(wz,k′) and q(gz,k′,b) assume a form similar to
that of their respective conditional posteriors (14)
and (15): q(wz,k′) = Gamma(wz,k′ ; α̂

(w)
z,k′ , β̂

(w)
z,k′), and

q
(
[gz,k′,b]b

)
= Dirichlet([gz,k′,b]b ; α̂

(g)
z,k′). Note that the

parameters [α̂
(w)
z,k′ ]z,k′ , [β̂

(w)
z,k′ ]z,k′ , [α̂

(g)
z,k′ ]z,k′ comprise ΨG .

We now compute the gradient of f(ΨG) by expanding
(19) only in terms of ΨG .
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Lemma 5.1. Consider Q as defined in (19):

1. The natural gradient of Q with respect to
α̂

(w)
z,k′ , β̂

(w)
z,k′α(w)

z +
∑
t,k,b,t′ Eq

[
st,k,z,b
t′,k′

]
− α̂(w)

z,k′

β(w)
z +

∑
t,k Eq [st,k,z ]− β̂(w)

z,k′

 (20)

2. The natural gradient of Q with respect to α̂(g)
z,k′ is

given by
α(g)

z +
∑
t,k,t′

Eq
[
s
t,k,z,b

t′,k′

]
− α̂(g)

z,k′


b

(21)

Maximizing Q with respect to Ψl: Given ΨG , it is
known that the maximizer of Q (19) with respect to
ΨV , denoted by Ψ∗V satisfies the following [3, 11]:

log q(ΘV) ∝ Eq(ΘG)

[
log p

(
[st,k,z ]z, [s

t,k,z,b

t′,k′ ]z,b|st,k, st,kt′,k′
)]
(22)

It is complicated to compute the distribution
(22) in closed form. However, we only require
Eq [st,k,z] ,Eq

[
st,k,z,bt′,k′

]
for the purpose of calculating

the gradients using Lemma 5.1 (See (20), (21)). To
get these, we may approximate the required quantities
by alternatively sampling st,k,z and st,k,z,bt′,k′ from (22).
It requires the conditional distributions for st,k,z and
st,k,z,bt′,k′ , which are given by the following Lemma:

Lemma 5.2. Consider the distribution (22).

1. The conditional distribution for st,k,z,bt′,k′ is:

[
s
t,k,z,b

t′,k′

]
z,b
|
(
[st,k,z ]

z
,D
)
∼ Mult

(
s
t,k

t′,k′ ,
[
δ
t,k,z,b

t′,k′

]
z,b

)
,

(23)

where δt,k,z,b
t′,k′ ∝ st,k,ze

Eq

[
logw

z,k′
]
e
Eq

[
log g

z,k′,b
]
φb
[
t
′ − t

]
2. The conditional distributions for st,k,z after

marginalizing out st,k,z,bt′,k′ is given as follows:

q
(
[st,k,z ]

z
|D, ηt,k

)
∝ p

(
s
t,k

t′,k′ (m)|st,k,z(m), Eq [W ] , Eq [G]

)
p
(

[st,k,z ]
z

; st,k, ηt,k

)
(24)

Note the similarity of the conditional distributions
(23),(24) to that of (16),(17), the only difference being
that in the former expectations of the global variables
are used, while in the latter their sampled values are
used.

Stochastic variational inference From Lemma
5.1, we note that the costliest requirements to compute
the gradient are to evaluate Eq [st,k,z] and Eq

[
st,k,z,bt′,k′

]
.

This becomes expensive for very large temporal se-
quences. But it is easy to compute a noisy version of
the gradient which leads to a stochastic gradient ascent
algorithm as given in Algorithm 2, which requires step
sizes ρl for each each iteration l. Following Mimno
et al. [21], we choose ρl = (τ0 + l)

−κ, where we choose
κ = 0.5 and τ0 = 10 in the experiments.

Algorithm 2: Stochastic Variational Inference
(SVI)
Data: Binned counts (1), Maximum gradient stepsM,

Maximum Gibbs Iterations I, Step sizes ρt
Result: Optimal variational parameters ΨG
Initialize variational parameters Ψ

(0)
G ;

for l ∈ 1, . . . ,M do
Choose batch Bl ⊂ [T ];
for t ∈ Bl, do

for i ∈ [I] do
Sample x(i) = st,k,z,bt′,k′ using (23);
Sample y(i) = st,k,z using (24);

Compute empirical mean ŝt,k,z using [x(i)]Ii=1;
Compute empirical mean ŝt,k,z,bt′,k′ using [x(i)]Ii=1;

Approximate the summations
•

∑
t,k,t′,k′

Eq[st,k,z,bt′,k′ ] ≈ T
|Bl|

∑
t∈Bl,k,t,k′

ŝt,k,z,bt′,k′ ;

•
∑
t,k Eq[st′,k′,z′ ] ≈

T
|Bl|

∑
t∈Bl,k,z

ŝt,k,z;

Compute natural gradient ∇ΨG (Q) (Lemma 5.1);
Update the variational parameters
Ψ

(l)
G = Ψ

(l−1)
G + ρl∇ΨG (Q)

Return Ψ
(M)
G ;

5.4 Discussion

We make the following observations comparing Gibbs
and SVI (Algorithm 2) procedures to optimize (12).

1. Both the algorithms are similar with respect to
sampling the latent variables st,k,z and st,k,z,bt′,k′ . In
Gibbs iterations, we need to make a complete pass
over the whole data before updating the global
variables. Hence, SVI (Algorithm 2) scales better
for very large datasets.

2. Algorithm 2 is equivalent to an online algorithm
when the batches are chosen contiguously from
a data stream, thus making it more suitable for
large scale online deployments.

3. Gibbs iterations, on the other hand, converges
faster with respect to the posterior distribution,
and thus is an attractive solution when the com-
plete data can fit into memory.

6 Experiments
BIRTH focuses on modelling the causal relationship
which are observed in multidimensional events streams.
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This is a less explored problem with significant model-
ing challenges, as discussed in Sections 1. BIRTH ad-
dresses these challenges and provides a unified ab-
stracted framework which can be directly applied in
multiple real world setting, for example, in social media
content streams, This section evaluates the modelling
abilities of BIRTH , by comparing three of our proposed
procedures.
1. Gibbs Inference (GI): Gibbs Iterations (Section

5.1) which performs multiple passes over the com-
plete data.

2. Stochastic Variational Inference (SVI): Itera-
tions as defined in Algorithm 2 which process the
data as mini-batches and does multiple passes over
the complete data.

3. SVI-Online(SVI-O): Processes the complete data
once as a stream (sequentially) in mini-batches.

4. Baseline (P): A Poisson process baseline as de-
scribed in Section 3. We model the Poisson rate
λt
′,k′

t,k = st′,k′wk′,k,l. Because the rate is specific
to each (k′, k, l), this is provides a strong baseline
performance. We also compare our method with a
variant of Discrete multidimensional Hawkes pro-
cess which can use causal parent information but
its performance is worse as compared to poisson
baseline, hence we skip those results in the main
paper for better presentation and add them in
supplementary Table 1.
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Figure 2: Relative Log Likelihood on validation set.
(Left: Synthetic Data, Right: Real Data).

Please note that SVI and GI are comparable in the sense
that both of them perform multiple passes over the
whole dataset, whereas SVI-O does a single streaming
pass. Hence, wherever possible we compare SVI-O with
GI to demonstrate its advantage in the online settings.

6.1 Synthetic Experiments

In this section, we compare the inference procedures on
a synthetic dataset generated using Algorithm 1. We
train BIRTH by generating M = 100 event streams
with T = 500 time bins using the following configura-
tions: K = 4, Z = 3, B = 10, L = 20. More details on
the data generation are in the supplementary material.
In this setting, the dataset fits into the memory and
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Figure 3: Comparison of True and Recovered w.

hence both GI and SVI are applicable. We use the
learnt model to report the following results.

Validation Log Likelihood: Using the same con-
figuration as above, we generate a validation dataset
of M = 25 event streams, in which we evaluate the
log-likelihood, given the learnt model parameters. Let
LA denote the predictive log-likelihood of the data
given the parameters learnt using an algorithm A,
A ∈ {GI, SVI-O, P}. We use the relative log-likelihood
of the proposed algorithms as a metric for comparison,
which is defined as (LA − LP) /(#events). To ensure
fairness of comparison, we compare GI and SVI when
their corresponding models were trained for same time
duration. The x-axis of Figure 2 refers to the training
time, and y-axis refers to the relative log-likelihood,
when each of the algorithms are trained for t units.
Note that y = 0 corresponds to the Poisson baseline
and any y > 0 means that the model is performing
better than the baseline. As expected, both inference
procedures have better likelihood of the data than that
of the baseline. In addition, Figure 2 also illustrates
that, with time, the trained model parameters from
both GI and SVI-O approach that of the true model.
This attests the fact that SVI-O is a strong proce-
dure in cases where running GI might be infeasible,
SVI-O’s slower convergence can be attributed to the
fact that it is a stochastic algorithm but it comes with
the advantage of being an online procedure and memory
efficiency: memory requirement of O(1) as compared
to GI which scales linearly with the number of streams
and time bins (refer to figure in supplementary).

Structure and True Model Parameter Recov-
ery: Given that the model fits the data well and in-
ference procedure achieves good Likelihood, we try to
evaluate the structure of the recovered latent states.
Figure 3 plots the expected offspring rate of a la-
tent state (Z ∈ {0, 1, 3}) for a particular event type
K ∈ {0, 1, 2, 3} for the true model, GI and SVI-O as
heatmaps. Here, similar colors denote similar expected
offspring rates. We can see that both the procedures
recognizes that the second latent state gives rise to the
highest number of offsprings, followed by first latent
state, whereas the first creates fewer offsprings. The
intra-state variations with respect to event types are
captured well by both the methods. We go one step
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forward and demonstrate an even stronger results for
the recovery of the true planted parameters which were
used to generate the synthetic dataset. In Figure 4,
for the compared algorithms, we plot the normalized
error of the recovered model with respect to the true
planted parameters versus iterations. As evident, both
algorithms achieve better recovery error as iterations
progress, while the recovery error of Gibbs falls faster
than that of SVI-O.

Locating Rare Event: To illustrate the ability of
BIRTH to capture rare influential events, we compare
the time bins of the inferred rare events versus the
true time bins, which we know in the case of synthetic
experiments. For both the algorithms, GI and SVI-O,
we obtain the inferred rare events time bins and then
plot the True Positives, False Positives (FP) and False
Negatives (FN) in Figure 1. It is evident that most of
the rare events are predicted correctly but in very few
cases we predict a little late due to which we get FN’s
and FP’s in case of SVI-O. This attest the fact that
the inference procedures can locate these rare event.

6.2 Real Data Experiments

This sections aims to demonstrate the modelling abil-
ities of BIRTH on a snapshot of a real world social
network dataset. The dataset consists of viral event
streams, which are the top 0.1% percentile in terms
of the number of views accumulated by the stream.
The data had events streams with T = 86K, K = 5,
∆ = 3600 seconds. We modelled this dataset by using
three latent states (Z ∈ {0, 1, 2}). We choose 3 states
to depict low, medium, high reproductive rates, which
captures all the observations reasonably.
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Figure 4: Recovery Error for the global parameters.

Validation Log Likelihood: We compare the Log
Likelihood values achieved by GI and SVI and SVI-O
inference procedures which is shown in Figure 2. This
Figure is to be interpreted in the same way as in Sec-
tion 6.1. Here, we can see that all three methods
achieve better likelihood on a held out validations set
as compared to the Poisson baseline.

Locating Rare Events: Similar to section 6.1, we
try to locate the rare events (events leading to dis-
proportionate responses) in the stream. We plot the
occurrence of events identified as rare (assigned to

Z = 2) vs the cumulative views attained by the sam-
ples (Figure 1). Given that for the real data we don’t
know the ground truth, hence, we only show inferred
rare events. In Figure 1, in Purple stream, a rare event
occurs in the initial phases of the stream and the video
start to accumulate disproportionate number of events
after that point. In Red stream, the model identifies
that few rare events occurred initially and due to that
the streams starts to accumulate more events and such
events keep on occurring and the stream rises more
smoothly, whereas in the Purple stream the rate of ac-
cumulation of new event decrease as we don’t observe
another rare event. In Green Stream, we observe that
rapid surges in the number of events is preceded by
rare events. This result further affirms our modelling
choice as we are able to provide meaningful explana-
tions for the various growth patterns observed in event
stream. Given that the algorithms have some inherent
randomness, due to this the latent state occurrence
timing might not be always precise, but they can be
predicted within reasonable distance. Another point
to note is that all of these rare events are not created
equal, what this means is that one rare event might
create much more offspring as compared to another
one. The individual rare events are just tied to each
other via the expected offspring count which we demon-
strate in Figure 3 but these individual events might
have varying level of impact on the streams.

Discussion: Through these set of experiments, we
demonstrate that the proposed Generative model and
the inference procedures are good choices for mod-
elling and inference on multidimensional event streams
with causal parental information. They explain the
observed data effectively (i.e., higher Log Likelihood),
along with providing structural insights and structure
recovery. We also propose a scalable online inference
procedure which can be exploited in streaming settings,
and show its competitiveness against the other infer-
ence procedures proposed. BIRTH allows us to predict
occurrence of events which may create disproportionate
responses and lead to rapid spread of the stream.

7 Conclusion
The main focus of this paper is to introduce BIRTH ,
a modelling framework for an abstract setting of multi-
dimensional causal event streams. The paper lays the
theoretical foundations for this model, proposes infer-
ence routines, and demonstrate the modelling efficacy.
BIRTH can potentially be used in various downstream
task like prediction if an event stream will go viral or
not but we defer such exploration as future works.
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