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ABSTRACT
Several real-world problems including network influence

maximization, rank aggregation, etc. can be posed as prob-

lems that output a good ranking of a set of items. We intro-

duce a unifying algorithmic framework based on a novel

notion called rank refinement of monotonic set functions to
tackle such problems. We prove that under very mild mono-

tonicity assumptions the proposed algorithm converges to

a stable ranking. We show that IMRank, a highly scalable

influence maximization algorithm can be derived as a special

case of our framework. By careful choice of the monotonic

set functions, we derive novel generalizations of IMRank that

balances the influence and diversity of the top-ranked nodes

without compromising on scalability. We provide extensive

experimental analysis on both synthetic data-sets based on

stochastic block models and large scale real-world data-sets

to demonstrate the efficacy of the proposed framework.

1 INTRODUCTION
We consider settings where the input is typically modelled

as a graph on an underlying set of nodes and the output

is a permutation or ranking of the nodes which has some

desirable property. Several natural problems including rank

aggregation, seed selection in influence maximization, etc.,

can be modelled in this fashion. As a concrete application,

we consider the influence maximization seed selection prob-

lem. Here, given a input graph and pairwise probabilities of

influence among nodes, the goal is to output a set of top K
influential nodes which on activation results in the largest

influence spread. Typical algorithms for this problem try
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to exploit the structure of the network and the nature of

the probability of influence to come up with a set of good

nodes to activate. However, most of these algorithms either

run into scalability issues when the network is large or are

too simple as heuristics (top degree nodes) which may be

highly sub-optimal. Another important problem that arises

in this application is the notion of diversity in seed selection.
For instance, if a product company wishes to choose top 10

social media influencers, it is only fair to choose a set of

people who are diverse and represent all sections of the pop-

ulation. However, simply trying to maximize diversity might

lead to severe loss of influence. Thus, a natural question to

ask in this scenario is how can one develop efficient, scalable
algorithms for the seed selection problem which respect the
underlying diversity in the population without compromising
much on influence?

In this work, we present a general algorithmic framework

which we call as Rank Refinement and show how it can be

used to tackle the above problem. While our framework can

potentially be useful in general settings which involve rank-

ing on graphs, we will restrict our focus to the application

of influence maximization in this work. For this application,

we will show that DAIM - Diversity Aware Influence Maxi-

mization, a concrete algorithm that we propose to tackle this

problem emerges as a natural instantiation of our general

rank refinement framework.

By rank refinement, we refer to an iterative scheme which

starts with a reasonable guess for a ranking of interest and

refines it over iterations. We show that under a very general

monotonicity assumption of set functions, our algorithm

converges to a stable ranking. A specific instantiation of the

rank refinement framework recovers a well known scalable

ranking based seed selection algorithm known as IMRank

[10]. Viewing IMRank using the rank refinement lens proves

to be extremely beneficial in establishing several interesting

properties of the algorithm which were not explicitly known

before. For instance, we show that the refinement procedure

of IMRank is a linear map of the all ones vector where the

linear map can be viewed as the transpose of a Markov chain

transition probability matrix.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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More importantly, our analysis of IMRank using the rank

refinement lens reveals a fundamental trade-off between

what we term as influence resistance and influence capacity
of nodes in a network. We show that the IMRank algorithm

tries to balance this trade-off in a specific fashion which may

not be always optimal. Developing this further, we propose a

novel algorithm known as DAIM - Diversity Aware Influence

Maximization which in practice balances this trade-off in a

much better fashion without compromising on the influence

spread.

We test our proposed algorithm on several real world

data-sets and synthetic data-sets and analyze the sensitivity

for our algorithm to several interesting problem parame-

ters. Overall, our experiments reveal that one can expect to

achieve significant gain in diversity of seed selection without

much loss in influence (or even gain in influence in certain

cases) in practice.

1.1 Summary of Contributions
(1) We propose a general iterative rank refinement scheme

based on monotonicity of set functions and prove the

convergence of our algorithm to a stable ranking

(2) We demystify the workings of a popular scalable rank-

ing based algorithm for seed selection known as IM-

Rank which we show to be a special case of the rank

refinement framework.

(3) We propose DAIM- Diversity Aware Influence Maxi-

mization, an algorithm which balances both influence

resistance and influence capacity of nodes and hence

leads to better diversity

(4) We conduct extensive experiments on real world and

synthetic data-sets to understand why and how the

proposed algorithm DAIM is a better alternative to

IMRank for applications which seek diversity.

2 RELATEDWORK
The task of influence maximisation was introduced by [18],

where the aim is to select a set of seed nodes such that given

a propagation model the spread is maximised. [18] proposed

the Independent Cascade (IC) and linear threshold (LT) mod-

els for the spread of information over networks. There are

three broad categories of algorithms which are used for the

task the influence maximisation. The first class of algorithms

perform Monte Carlo Simulations for simulating the Influ-

ence spread. The first method in this class was proposed

by [18] where the problem of Influence maximisation was

proposed and the greedy algorithm which in each iteration

selects the node which provides the maximum marginal gain

was analyzed. [13, 20] exploited the sub-modularity property

to develop efficient algorithms which are much faster than

the greedy algorithm. These methods come with theoretical

guarantees on solution qualities but suffer in compute time.

The second class of algorithms are based on sampling tech-

niques. [3, 28, 29] perform sampling to estimate the influence

of node and use the estimates to perform seed selection. They

construct reverse reachable set from the sampled nodes and

then a greedy max covering algorithm selects the seed nodes.

[11, 24] generate several snapshots of the graph and estimate

the influence by averaging over these snapshots.

The third class of algorithms perform some sort of ap-

proximate scoring of nodes which are then used for the seed

selection. The key idea in [7–9, 12, 13, 17] is that the influ-

ence of a node on other nodes is a function of the number of

paths between these two nodes. These models are efficient

and scalable but there is no guarantee on the quality of the

solution obtained. We on the other hand consider a ranking

based approach to the problem.

There have been many recent algorithms which look at

various aspects of the influence maximization problem. [6,

15] propose robust algorithms for influence maximisation,

[19] propose an online algorithm for influence maximisa-

tion, [23] propose a scalable algorithm which can work on

distributed platforms like MapReduce, [25] use graph neural

networks for learning latent social representation and use

them for influence prediction.

The work that is most related to ours is that of [10]. Here,

the authors propose a ranking based method for approximat-

ing influence scores for each node in an iterative manner

called IMRank. Given any initial ranking they employ a Last-

to-First allocation (LFA) strategy (See Section on Preliminar-

ies for further details) to approximate the marginal influence

of the nodes in the network. The scores are then used to

refine the ranking. They provide a proof of convergence for

their algorithm and empirically show that the solution ob-

tained by IMRank as very close to the greedy solution and

it is also scalable to very large graphs. Our proposed Rank

Refinement framework is significantly general and incor-

porates the IMRank algorithm as a special case. We show

that our methods can provide a way to trade of between

maximizing influence or propagating influence to diverse

communities.

Community based approaches: [14, 26] proposed a com-

munity based approach in which the influence propagation

process has two steps. In the first part, the seed nodes are

divided among different communities and in the second part

the influence propagates within communities which are inde-

pendent of each other. In contrast, the algorithms we propose

do not have this two step structure. More recently [5] incor-

porated the topology of the graph to model user diversity.

They define two objective functions, namely capital and di-

versity and then perform targeted Influence maximisation.

They provide approaches based on local and global diversity
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to exploit the structural information from the diffusion sub-

graph given a target node. Our setting is different from theirs

and do not have a target node which we wish to influence.

[4] exploited the community structure to select seed nodes

in communities and computed their local spreads in order

to minimize the number of seed nods required for influence

maximisation. In our setting, the community structure is

not assumed by the algorithm. [22] proposed an algorithm

which constructs a tree based index that computes user’s

community based influences and the employ maximum in-

fluence arborescence (MIA) model to approximate the in-

fluence spread. [27] partition the network and then select

most influential nodes from each partition based on their

local influences. [16] builds a latent variable model which

captures community level topic interest and then they in-

fer community-to-community influence strength based on

the topic interest. Finally, they propose a heuristic based

algorithm to mine influential nodes in the community. None

of the above algorithms employ a ranking based approach

to selecting diverse nodes while our focus is on developing

ranking based procedures.

3 PRELIMINARIES
Let [n] = {1, . . . ,n} and let [a,b] = {a,a+1, . . . ,b} for some

integers a < b. let G = ([n], P) denote a directed graph on

n nodes where Pi j ∈ [0, 1] denotes the probability of node i
influencing node j. We assume that there are no self edges

i.e., Pii = 0 ∀i . Let Sn denote the set of permutations on

[n] where if σ ∈ Sn,σ (i) denotes the rank of node i accord-
ing to σ . We will use the terms permutation and ranking

interchangeably. For a (score) vector s ∈ Rn , we say that

σ = argsort(s) if σ (i) < σ (j) =⇒ si >= sj ∀i, j. We say

that σ = argstabsort(s) if σ = argsort(s) and σ (i) < σ (j)
whenever si = sj for some i < j i.e., σ is a stable sorting of s.

Given a positive integer k ∈ [n], the influence maximiza-

tion problem is to choose a set S ⊆ [n] s.t. |S | = k for which

the expected size of the influenced nodes is maximized ac-

cording to certain underlying influence spread model. One

of the most popular and well studied influence spread model

is the Independent Cascade (IC) model introduced in [18]. In

this model an initial set of k seed nodes is activated. In the

first step, every seed nodes get one chance to activate each of

it’s neighbours where the neighbour j of a seed node i gets
activated with probability Pi j . In the next step, the nodes

that were activated in the previous step get one chance to

activate each of their inactive neighbours. The process con-

tinues until there are no more active nodes. It is well known

that a greedy algorithm for the IC model gives a (1 − 1

e )

approximation to the expected spread.

3.1 The IMRank Algorithm
The greedy algorithm, while attractive in terms of it’s approx-

imation guarantee, is not practical for large scale graphs ow-

ing to the large number of Monte Carlo simulations needed

to find the top k nodes [18]. Several approaches have been

proposed to remedy this problem [3, 7, 11, 13, 20, 23, 29]. The

line of work which we will be interested in is the ranking

approach to select the top K seed nodes. Surprisingly the

work in this area has been quite sparse and the current state

of the art ranking based approach is the IMRank algorithm

of [10]. Given a graph G, the IMRank algorithm starts by

selecting a good initial ranking σ0 ∈ Sn of the nodes. The

algorithms proceeds in iterations and at every round, a last-
to-first allocation (LFA) strategy described below is followed

to update a ranking σt to a new ranking σt+1. The algorithm
terminates when σt+1 = σt for some t .

Algorithm 1 IMRank Algorithm [10]

Input: Graph G = ([n], P) and an initial ranking σ0
Initialize si = 1 ∀i
repeat

for i = n to 1 do
for j = 1 to i do

s(σ (j)) = s(σ (j)) + Pσ (j)σ (i) ∗ s(σ (i))
s(σ (i)) = s(σ (i)) ∗ (1 − Pσ (j)σ (i))

end for
end for
σt+1 = argsort(σt )

until σt+1 , σt
Output: σt

The LFA strategy for IMRank is as follows: An initial score

of 1 is assigned to each node in [n]. The score of a node i sσti
w.r.t σ ∈ Sn is computed in a last to first manner i.e., from

i = n to 1 as follows. In the turn for computing score of node

i , every node j that is ranked above i in σ (i.e., σt (j) < σt (i))
takes away Pji fraction of node i’s current score and adds

it to it’s own score, thus reducing the score of node i by a

fraction of (1− Pji ). The nodes follow the order according to

σt to take away from i where the higher ranked nodes take

away from i before the lower ranked nodes. Note that nodes

ranked lesser than i according to σt do not get a chance to
take away from i . Once the score for every node has been

computed according to the LFA strategy described above,

the updated permutation is computed as σt+1 = argsort(σt ).
[10] use a potential function based argument to show that

the IMRank algorithm converges for the LFA strategy de-

scribed above. The algorithm is easily scalable for large scale

graphs and converges in a very few iterations in practice.

As noted in [2], there do exist algorithms which trade off

scalability to the size of the spread.
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Algorithm 2 RR-Generic: Rank Refinement of Monotonic

Set Functions

Input: F = { f1, . . . , fn} where each fi : 2
[n] → R+ is a

monotonic set function. A initial ranking σ0 ∈ Sn
repeat

sσtF (i) = fi (B
σt (i)) ∀i

σt+1 = argstabsort(sσtF )

until σt+1 , σt
Output: σt ∈ Sn

4 RANK REFINEMENT OF MONOTONIC
FUNCTIONS

In this section, we present an abstract and generic iterative

procedure called Rank Refinement-Generic (Algorithm 2) to

obtains rankings from a set of set functions. Concrete realiza-

tions of this procedure will lead us to interesting algorithms

for the influence maximization problem with far reaching

generalizations of the IMRank algorithm described earlier.

We begin with the following definitions

Definition 4.1. Let σ ∈ Sn . Define the before set of i in σ
as Bσ (i) = {j : σ (j) < σ (i)}

Definition 4.2. Let f : 2
[n] → R+. We will call f a mono-

tonic set function if for any E ⊆ E
′

⊆ [n], f (E) ≥ f (E
′

)

Definition 4.3. Let F = { f1, . . . , fn} be a set ofnmonotonic

set functions defined on 2
[n]

. A score function sσF : [n] → R+
is said to be induced by F with respect to σ if

sσF (i) = fi (B
σ (i)) ∀i

With the above definitions in hand, we describe a iterative

algorithm, which we call Rank Refinement- Generic, to re-

fine a ranking at every iteration. The algorithm is shown in

Algorithm 2. Our main result of this section is to show that

the iterative procedure described in Algorithm 2 terminates

after a finite number of steps.

Theorem 4.4. Let F = { f1, . . . , fn} be a set of monotonic
set functions and let sσ0F be the score function induced by F
w.r.t σ0. Then the sequence {σ0,σ1, . . .} computed by the RR-
Generic algorithm has the property that there exists a t < ∞

such that σt+1 = σt .

Proof. Assume for the sake of contradiction that the RR-

Generic algorithm does not converge. As there are only a

finite (n!) number of permutations, the only way the algo-

rithm cannot converge is when it cycles in a loop i.e., ∃k > 2

such that

∀t ∈ [1,k − 1], σt = argstabsort(sσt−1F ), σk = σ0

We can assume that the loop begins and ends at σ0. This
is without loss of generality as the only other case is when

the loop begins at some σp after p > 0 iterations of the

algorithm. In such a case, we can assume that the algorithm

was initialized with σ0 = σp . A pictorial representation of

the key idea of what follows in the proof is given in ??.
Definem ∈ [n] to be such that ∀j > m, σt (j) = σ0(j) ∀t ∈

[1,k − 1]. If such anm does not exist, then letm = n. Define
ℓ(σ ) = j where σ (j) =m. We first show that the following is

true:

sσF (ℓ(σ )) ≤ sρF (ℓ(ρ)) ∀ρ ∈ Sn (1)

To see why this is true, note that

sσF (ℓ(σ )) = f (Bσ (ℓ(σ )) = f (E)

where E = {j : σ (j) < m}. On the other hand,

sρF (ℓ(ρ)) = f (Bρ (ℓ(σ )) = f (E
′

)

where E
′

= {j : ρ(j) < ρ(ℓ(σ ))}. However, by our choice of

m, it must be the case that ℓ(σ ) < m and hence E ⊆ E
′

.

From Equation 1 we see that by choice ofm, there must

exist a ranking σr , r ∈ [1,k] such that ℓ(σr ) , ℓ(σr+1) (If not,
then σ1 = σ0 and the algorithm converges). Without loss of

generality, assume that σr = σ0. This can be done because

if a cycle exists among {σ0, . . . ,σk = σ0}, then a cycle also

exists among {σr ,σr+1, . . . ,σ0, . . . ,σr }.
From the previous argument, we know that ℓ(σ0) , ℓσr+1).

Moreover, asσ0(ℓ(σ0)) =m, it must be the case thatσ1(ℓ(σ0)) <
m. Let v be the smallest index when ℓ(σv ) = ℓ(σ0). The fol-
lowing series of inequalities must then hold:

sσv−1

F (ℓ(σv )) = sσv−1

F (ℓ(σv )) (By definition)

≥ sσ0F (ℓ(σ0)) (By choice of v)

> sσ0F (ℓ(σ1))

≥ sσ1F (ℓ(σ1))

≥ sσ1F (ℓ(σ2))

. . .

≥ sσv−1

F (ℓ(σv ))

But this cannot happen because the inequality in the third

line is strict. Hence we arrive at a contradiction. Thus the

RR-Generic algorithm has to necessarily converge. □

Corollary 4.5. The RR-Generic Algorithm converges when
F is replaced by F t = { f t

1
, . . . , f tn } where in the t-th iteration,

f ti depends on σ t i.e., f ti : (2[n] × σ t ) → R+ and f ti (E,σ
t ) ≥

f ti (E
′

,σ t ) whenever E ⊆ E
′

∀i, t .

Proof. Note that the proof of RR-generic uses the score

function which depends on σ t
. It is easy to check that with

the monotonicity property as stated in the theorem, the proof

is identical to that of Theorem 4.4 □
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Figure 1: A pictorial representation of the key idea in the Proof of Theorem 4.4

4.1 Examples of RR-Generic Monotonic
Functions

We present a few simple instantiations of the RR-Generic

algorithm to illustrate the flexibility that comes with the

abstraction.

Corollary 4.6. Let F = { f1, . . . , fn} and fi (E) = n − |E |
for all i and for all E ⊆ [n]. Then, for any σ0 ∈ Sn , the RR-
generic algorithm converges in a single step and outputs σ0

The above corollary illustrates that the output of the RR-

generic algorithm crucially depends on the initialization and

could potentially have n! possible outputs for certain choice

of F . However, as the corollary below states, the output can

also be the same independent of the initial permutation for

certain choices of F .

Definition 4.7. Given a G = ([n], P), define bi =
∑

j Pi j as
the Borda score associated with node i . Define σB to be the

Borda ranking i.e., σB = argstabsort(b).

Corollary 4.8. Let F = { f1, . . . , fn} and fi (E) =
∑

j ∈E (1−

Pji ) +
∑

j<E Pi j for all i and for all E ⊆ [n]. Then, for any
σ0 ∈ Sn , the RR-generic algorithm converges in a single step
and outputs the Borda ranking σB

The above corollary, while straightforward, immediately

suggests that if one comes up with a reasonable set of mono-

tonic functions F , then the RR-generic algorithm can be used

to find a useful ranking efficiently. While the Borda ranking

is widely used for rank-aggregation, our focus in this work

will be on coming up with monotonic functions which will

be useful in influence maximization. We discuss this in detail

in the next section.

5 IMRANK: INSIGHTS AND A NOVEL
ANALYSIS

In this section, we begin by showing that the state of the

art ranking based influence maximization algorithm IMRank

can be derived as a special case of the RR-Generic algorithm.

Theorem 5.1. The IMRank algorithm is a special case of
the RR-Generic algorithm.

Proof. We prove this by showing that the score function

of a node in IMRank increases monotonically if the node

is pushed above in the ranking. Specifically fix a σ ∈ Sn
and consider any node i . The score assigned by IMRank

depends both on the set Bσ (i) andAσ (i) = {[n] \ {Bσ (i)∪i}}.
Now consider a different permutation ρ ∈ Sn such that

Bρ (i) ⊂ Bσ (i) and the relative ordering of all other nodes

remain the same w.r.t ρ and σ . It follows that Aρ (i) ⊃ Aσ (i).
Thus the number of nodes i takes away score from is greater

in ρ than in σ . Also, the number of nodes i gives away it’s

score is lesser in ρ than σ . As the relative ordering of ρ and

σ is same for every other node, this proves that the score

sσ (i) ≤ sρ (i).
Now we can choose fi ∀i such that f ti (B

σt ) = sσt (i) ∀i, t
i.e., the score computed for the i-th node by IMRank in the

t-th iteration w.r.t σ t
. The result follows from Corollary

4.5. □

While the proof of the IMRank algorithm depended on

the submodularity of the LFA allocation strategy, we find

here that much lesser is actually required. Specifically, the

key property needed for the convergence of the IMRank

algorithm is the monotonicity of the LFA strategy and not

submodularity.

We now deconstruct the properties of the LFA strategy

further which will lead us to novel algorithms for diversity
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Figure 2: A toy example illustrating different criteria for seed node selection. DAIM(1) corresponds to preferring
nodes which are diverse, DAIM(0) corresponds to nodes which have high Influence capacity, DAIM( 1

dmax+1
) corre-

sponds to nodes which balance both as done by IMRank. Refer text for explanation regarding the nomenclature.

aware influence maximization that we will describe in the

next section.

Theorem 5.2. Let sin ∈ Rn be any score vector and let
sout ∈ Rn be the score vector of each node after the LFA strategy
i.e.,

sout = LFA(sin)

The mapping LFA as described above is linear i.e., there exists
a Q ∈ Rn×n such that

sout = Q.sin

Furthermore QT is a valid transition probability matrix of a
Markov chain.

Proof. Note that in the IMRank algorithm (Algorithm 1),

the scores of items gets updated from the last ranked to the

first ranked (according to σ ) and once the score of an item

is updated in it’s turn, it does not change after that. Define

the matrix Q i j
associated with a directed edge (i, j) as the

matrix which is identical to the identity matrix except in

the j-th column where Q i j (i, j) = Pi j and Q
i j (i, i) = 1 − Pi j .

Given a σ , the LFA strategy can then been seen as repeatedly

pre-multiplying the score vector sin with the matrices corre-

sponding to the edges according to σ chosen by the IMRank

Algorithm in a last to first manner. Thus the LFA mapping

is a product of these simple edge matrices and hence is a

linear mapping. Furthermore as each of these simple edge

matrices can be viewed as the transpose of a transition prob-

ability of a Markov chain on n nodes (since the values are all

between [0, 1] and every column sum to 1), their product is

also the transpose of a Markov chain transition probability

matrix. □

The above theorem posits that the LFA mapping is linear

and in fact the transpose of a Markov chain transition matrix.

We can further understand this mapping as follows: As the

mapping Q is linear, the i-th column of Q is simply given by

Q .ei where ei is the i-th standard basis vector. The interpre-

tation of this is as follows: If a score of 1 is given to node

i and 0 to every other node, the score left with each node

after the LFA strategy is given by the i-th column of Q. In
particular for every j , i ,Q ji represents the amount of score

taken away by item j from item i during the LFA strategy

and Qii is the amount of score that remains with item i after
the LFA strategy.

In light of the above discussion, a node i is important in
terms of maximizing influence in a network if the following

two intuitive properties hold:

• Influence Resistance - The node cannot be directly
influenced easily by other nodes i.e., influence resis-

tance Qii is large.

• Influence Capacity - The node influences, directly

or indirectly, several other nodes i.e., Qi j is large.

The score given to a node by the IMRank algorithm is

given by si =
∑

j Qi j = Qii +
∑

j,i Qi j can now be seen as

weighing these two requirements with equal importance.

6 DAIM - DIVERSITY AWARE
INFLUENCE MAXIMIZATION

As mentioned in the previous section,IMRank algorithm bal-

ances the Influence Resistance and the Influence Capacity
properties assuming that these are equally important. How-

ever, when the graph has a community structure, this may

not always be the best selection criteria especially when one

is interested in diversity of the seed nodes picked. We illus-

trate this with the simple toy example in Figure ??. As can be

seen, the example consists of a network with 7 nodes with

three different types of influences on edges, low, medium and

high. The graph has two disjoint communities corresponding
to the nodes {a,b, c,d, e} in one community and { f ,д} in
another. We consider three different selection criteria for this

graph: one based on Influence Resistance (corresponding to

DAIM(1)), one based on Influence Capacity (Corresponding
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Effect of λ on Influence and Diversity for settings (1) and (2) corresponding to the stochastic block model experi-
ments.

to DAIM(0)) and one that balances these both as done by

IMRank algorithm (corresponding to DAIM( 1

dmax+1
). We shall

explain the algorithm and the rationale behind these nomen-

clature shortly. For now, notice that an algorithm which tries

to pick nodes purely based on high influence resistance re-

sults in picking the nodes {a, e, f } as the top-3 nodes i.e.,

it picks nodes from both communities whereas the other

two criteria pick nodes only from one community. Further-

more among those that pick from the same community, the

one that uses just the Influence capacity picks the node {b}
among the top 3 whereas the one that balances both as done

by IMRank picks the node {e}. Notice that node b individu-

ally has better influencing capacity over it’s neighbours, it

has less influence resistance (strongly influenced by node

{a}). On the other hand, node {e} has much weaker influ-

ence over nodes in the community but has higher influence

resistance (not influenced by any other node). Thus IMRank

prefers node {e} over node {b} at the top of the list.

As mentioned in the introduction, it may be critical to

select seed nodes which could potentially trade away a bit

of influence for gaining diversity. While the basic IMRank

algorithm does not have a way to incorporate this, our in-

sights gained from the analysis suggests the following proce-

dure. Compute influence resistance and influence capacity for
each node and re-order nodes in an iterative fashion accord-
ing to a convex combination of these two quantities. This is
precisely what we do in the next section where we present

our proposed algorithm DAIM - Diversity Aware Influence

Maximization.

6.1 The DAIM Algorithm

Algorithm 3 DAIM Algorithm

Input: GraphG = ([n], P), an initial ranking σ0, Diversity
parameter λ ∈ [0, 1]
Initialize si = 1 ∀i
repeat

Compute the LFA map Qσt ∈ [0, 1]n×n

Let rti = Qσt
ii ∀i

Let cti =
∑

j Q
σt
i j ∀i

sσt = λ.dmaxrt + (1 − λ)ct

σt+1 = argstabsort(sσt )
until σt+1 , σt
Output: σt

In this section, we present the main algorithm of this paper -

the Diversity Aware Influence Maximization algorithm. The

algorithm is presented in Algorithm 3. The input to the al-

gorithm is a graph G = ([n], P) along with an initial ranking

σ0 and a diversity parameter λ. We refer to dmax to be the

maximum (unweighted) out-degree of the graphG . We refer

to the algorithm as DAIM(λ) when it is run with a certain

choice of λ.
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(e) (f) (g) (h)

Figure 4: Effect of λ on Influence and Diversity for settings (3) and (4) corresponding to the stochastic block model experi-
ments.

The algorithm starts with an initial ranking σ0 and iter-

atively refines it as follows. At iteration t , the algorithm

computes the linear LFA map matrix Qσt
w.r.t σt (refer The-

orem 5.2). Two score vectors are obtained from this matrix:

the influence resistance scores correspond to the diagonal

entries of Qσt
and the influence capacity corresponds to the

sum of the non-diagonal entries in each row ofQσt
. As these

two quantities are in different scales, they diagonal entries

are scaled by dmax which is the maximum possible value of

the sum of the non-diagonal entries in Qσt
. The algorithm

now computes a new score vector which is a convex com-

bination of the influence resistance score and the influence

capacity score of each node. A new ranking is obtained by

sorting the scores and the algorithm proceeds to the next

iteration.

We first show that the DAIM algorithm converges for any

choice of λ.

Theorem 6.1. Algorithm DAIM (Algorithm 3) converges
for any choice of λ ∈ [0, 1] as input.

Proof. The proof of this amounts to showing that both

the influence resistance and influence capacity scores have

the monotonicity property. This will then imply that any

convex combination of scores will also retain the monotonic-

ity property. The theorem then follows as an application of

Corollary 4.5 to the case where the functions fi are defined
to produce the convex combination of the influence resis-

tance and influence capacity score vectors. To see why the

influence resistance score vector rt has the monotonicity

property, observe that if a node i is moved higher up in the

ranking keeping other relative positions fixed, then the num-

ber of nodes which take away from i decreases and hence the
score increases. Similarly the number of items from which i
takes away increases and hence the influence capacity score

increases. Thus any convex combination of these score vec-

tors would also have the monotonicity property. □

The following corollary is almost immediate

Corollary 6.2. The DAIM rank algorithm recovers the
IMRank algorithm when run with λ = 1

dmax+1

Proof. Observe that for the choice of λ as in the statement

of the theorem, the scores are a scaled version of the row

sums of Qσt
where the scaling factor is given by

dmax

dmax+1
. As a

constant scaling does not affect the argstabsort routine, the
result follows. □

6.2 Computational Complexity

Algorithm 4 Influence Resistance Computation Algorithm

Input: Graph G = ([n], P), a ranking σ
for i = 1 : n do

ri = Πj ∈Bσ (i)(1 − Pji )
end for
Output: r ∈ Rn
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Figure 5: Effect of λ on Influence and Diversity for the Amazon dataset

The main advantage of IMRank over it’s other seed selec-

tion counterparts is it’s computational advantage. In practice,

IMRank is perhaps the fastest algorithm available to pick

reasonable quality seed nodes that approximate the com-

putationally expensive greedy algorithm. While DAIM was

proposed with the dual objective of balancing diversity and

influence in a better fashion, it is not clear from the way

it is presented as to how it compares computationally w.r.t

IMRank. This may look like an issue as we seem to com-

pute the matrix Qσt ∈ [0, 1]n×n at every iteration. However,

in practice, this bottleneck can be sidestepped by a careful

implementation of the algorithm. In particular, in our exper-

iments, for each iteration t , we run IMRank to obtain the

scores stim for each node and obtain the influence resistance

scores using algorithm 4. As stim = (rt + ct ) dmax

dmax+1
, we can

obtain λrt + (1 − λ)ct easily. As computing the influence

resistance takes at most O(nK) where K is the maximum in-

degree of any node, the DAIM algorithm can be implemented

as efficiently as the IMRank algorithm.

7 EXPERIMENTAL RESULTS
We present the experimental evidence on several real world

data-sets and synthetic data-sets to test the performance of

the proposed DAIM algorithm. We begin by describing the

data-sets which were used in our experiments.

7.1 Data-sets:
We use both real world and synthetic data-set in our experi-

ments.

Synthetic: For the synthetic data-sets, we work with sto-

chastic block models [1] under 4 different settings as listed

below.We chose SBMs for our experiments due to the natural

community structure in these graphs.

(1) Two clusters, cluster 1 with 400 nodes where an edge

is present with probability of 0.3 for each pair, cluster 2
with 100 nodes with edge probability of 0.2. The inter
cluster edge probability was set to 0.05.

(2) Same edge probabilities as (i) but the cluster sizes of

100 and 400 nodes respectively.

(3) Same edge probabilities as (i) but the clusters of size

250 nodes each.

(4) 10 clusters with sizes given by the vector [200, 175, 150,
125, 100, 90, 70, 50, 30, 10]. Each intra cluster edge is

present with probability 0.2 and each inter cluster edge
with probability 0.05.

In each of the above settings, a graph was generated ac-

cording the edge probabilities and fixed. The influence of

node i over node j was fixed using the in-degree of node j
as follows: Pi j =

1

nj
where nj is the in-degree of node j.

RealWorld: The following real world data-sets were used in
our experiments. We chose these because of the availability

of ground truth communities in each of these data-sets.
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Figure 6: Effect of λ on Influence and Diversity for the DBLP dataset

Data-set Nodes Edges Communities

Amazon 3074 16584 256

Live Journal 51474 860532 4605

DBLP 74907 358552 4605

Table 1: Statistics of Real-world Data-sets used in our
experiments

(1) Amazon [21]: Here the nodes are products and an

edge between two nodes is present if the products

were purchased together. The product category were

provided by Amazon.

(2) Live Journal [21] Here the nodes are online bloggers
and an edge indicates a friendship relation between

the bloggers. Communities are user defined groups.

(3) DBLP [21] Here the nodes were authors and an edge

indicate that the authors published a paper together.

The conference venue/journals were communities con-

taining all authors who published in the venue.

In all the above data-sets, we filtered out nodes which

were part of only one community so that the validity of the

results can be tested unambiguously. Also if the graph was

undirected, we made it directed by introducing edges in both

directions. Further details about these data-sets is given in

Table 1

In each of the above data-sets, we worked with two differ-

ent type of influences probabilities (standard in IM literature).

The first one is the in-degree based structure which is same

as that explained under the synthetic data-set section. Sec-

ondly, we also consider the trivalence model where for

each directed edge (i, j) node i influences node j in one of the

three modes: low, medium, strong. In all our experiments,

we set probability of low to be 0.0025, medium to be 0.025
and strong to be 0.25.

7.2 Experiment Settings:
We performed the following experiments for all the settings

described above

(1) Effect of varying λ in DAIM on Influence

(2) Effect of varying λ in DAIM on diversity

In (1) above, the influence was computed by running Monte

Carlo simulations for the greedy algorithm on the top K
nodes suggested by each value of λ. We tested with 100

values of λ for each experiment where the λ values were

equally spaced in [0, 1]. In addition, we always added the λ
that corresponded to IMRank as well.

In (2) above, the diversity in the seed set is measured as

follows: Let the ground truth community fractions be given

be the vector f ∈ [0, 1]L where L is the number of communi-

ties and

∑
i fi = 1 where fi is the fraction of nodes belonging

to community i . We compute a similar fraction for the seed

nodes. For a fair allocation algorithm that respects the diver-

sity of the population, the seed node fraction is expected to

be close to that of the ground truth than an allocation that

does not respect this diversity. Let the seed node fraction for
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Figure 7: Effect of λ on Influence and Diversity for the Live Journal dataset

IMRank be given by fimrank and for DAIM(λ) be given by fλ .
We measure how better or worse a particular choice of λ is

with respect to IMRank as follows:

Relative Diversity Gain of λ =
∥fimrank − f ∥

∥fλ − f ∥
Thus if the relative diversity gain is greater than 1, then the

choice of λ is better in terms of capturing the diversity in

the underlying node population.

7.3 Results:
Synthetic Data: We first present the result for synthetic

experiments on the stochastic block models (SBM). As de-

scribed before, we consider 4 different types of SBM settings.

The results for the first two settings are in Figure 3 and those

for the last two settings are in Figure 4. We show results for

two different value for the size of seed nodes K = 30 and

K = 50 respectively
1
. In each of the plot, we also highlight

the IMRank algorithm: for the influence plot, the IMRank

performance is indicated by a large sized (orange) dot and for

the diversity plot a (red) dotted line is shown corresponding

to the diversity relative gain equal to 1 (i.e., same as IMRank).

As can be observed from these figures,with increase in λ a

drop of atmost 10% is seen in terms of influence of the seed

nodes. However with respect to diversity, a relative gain of

around 400% is observed. bhis suggests that for SBM models,

DAIM rank with a reasonably large value of λ (around 0.5)

1
Other values of K were tried and similar results were observed and hence

have been omitted

provides much better diversity gain with almost negligible

loss of influence. Recall that the λ corresponding to IMRank

is equal to
1

dmax+1
which is close to 0.

Real-world Data-sets:We next present our results on the

real-world data-sets described earlier. Note that while these

data-sets had underlying ground truth communities, the al-

gorithm is unaware of the same. In general, it would not

be fair to expect the real world data-sets to perfectly follow

SBM structure especially with the number of communities

in the order of thousands in some data-sets.

We present the results for two different choices of K for

each of the three data-sets. For the Amazon data-set, we

report results for K = 50 and 100 (Figure 5) and for the DBLP

(Figure 6) and Live Journal (Figure 7 data-sets, we report

results on K = 30 and K = 50.

For all the three data-sets, when the influence probabilities

are based on in-degree of nodes, the behaviour mimics that

of SBMs. In particular, as λ increases, one observes a drop in

influence while a gain in diversity. Interestingly, and perhaps

surprisingly, in the case when the influence probabilities

follow the trivalence model, we get the best of both worlds

i.e., with increase in λ, both the influence and the diversity

increase for both the DBLP and Live Journal data-sets. In

some cases (see for instance K = 30 for Live Journal), the

gain in influence is significant and is in the order of 1000

nodes compared to IMRank while the gain in diversity is

around 3% which is also significant given the size of these

networks. This clearly suggests that the proposed DAIM
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algorithm is robust to picking diverse nodes independent

of the model of influence (trivalence or in-degree) and can

potentially lead to improvement in influence as well under

certain conditions.

In practice, the above experiments suggest that for real

world data, a reasonable choice for λ is again 0.5 which em-

pirically can be justified to provide improvement in diversity

with either minimial loss of influence or even gain in influ-

ence for certain models.

8 CONCLUSION
In this work, we presented a novel rank refinement of mono-

tonic set functions based framework to obtain rankings from

an initial ranking. We showed that the popular IMRank al-

gorithm can be viewed as a special case of our framework

and proposed DAIM - a diversity aware influence maximiza-

tion algorithm. Extensive experimental evidence on real and

synthetic data-sets establish the superiority of the proposed

method in contrast to existing ranking based algorithms.

We believe the rank refinement framework can be ana-

lyzed as a general tool for several related problems including

the problem of rank aggregation. In terms of applications,

we would like to investigate properties of this framework

for such problems as part of future work. On the theoreti-

cal front, we would like to understand the fixed points of

the rank refinement scheme in terms of quality of approx-

imating the desirable property in a graph. We also wish to

consider the theoretical aspects of rate of convergence for

the proposed framework.
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